[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 21, Issue 2 (4-2023) ::
Int J Radiat Res 2023, 21(2): 337-342 Back to browse issues page
A study to evaluate optimal plan through different photon energies and their combination in oesophageal intensity modulated radiotherapy
V.T. Hridya , D. Khanna , R. Aswathi , S. Padmanabhan , P. Mohandass
Department of Applied Physics, Karunya Institute of Technology and Sciences, Coimbatore, India , davidkhanna@karunya.edu
Abstract:   (1013 Views)
Background: The primary goal of this research is to identify the best energy or energy combination for an Intensity Modulated Radiotherapy (IMRT) treatment plan of esophageal cancer. Materials and Methods: Ten retrospective oesophagus case patients were selected, treated with 6MV IMRT plans and later replanned with different energies and energy combinations. The same prescription, planning parameters and optimization constraints were applied to all plans which were analysed and compared based on certain plan parameters and dosimetric parameters. Comparisons were also made using technical specifications, such as Monitor Units (MUs) and Treatment Time (TT). Results: The study shows most significant results with (6X+10X) plan. The Planning Target Volume (PTV) mean dose, D2%, D98%, D50% and Conformity Index (CI95%) improved as 29.68±0.38, 30.86±0.38, 27.42±0.67, 29.84±0.39 and 1.103±0.08 from their respective base plan values with the p-values 0.068, 0.176, 0.006, 0.159 and 0.085 respectively. Among Organs at risks (OARs), the right lung V20, left lung V20, spine mean dose and spine D1% values reduced to 7.99±6.0, 10.59±7.7, 19.99±9.7 and 18.63±9.4 from 8.70±6.50, 11.98±7.9, 22.76±7.6 and 20.04+8.0 respectively with the p-values 0.172, 0.259, 0.090 and 0.092. Total MU and TT in the original plan were 5054.28±2286.1, and 25.12±11.2, however they were lowered to 3036.54±1556.2, and 16.52±11.2, with p-values of 0.043 and 0.137, respectively. Conclusion: This study concludes that the mixed energy plan (6X+10X) is optimal for high-quality IMRT therapy because of its superior dosimetric indices (i.e., PTV coverage, OAR doses, and technical factors like MUs, TT, and low photoneutron generation).
Keywords: IMRT, OARs, TPS, DVH, mixed energy plans.
Full-Text [PDF 953 kb]   (1023 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Zelefsky MJ, Yamada Y, Fuks Z, Zhang Z, Hunt M, Cahlon O, Park J, Shippy A (2008) Long-term results of conformal radiotherapy for prostate cancer: impact of dose escalation on biochemical tumor control and distant metastases-free survival outcomes. Int J Radiat Oncol Biol Phys, 71(4): 1028-33. [DOI:10.1016/j.ijrobp.2007.11.066] [PMID]
2. Wang L, Yorke E, Desobry G, Chui CS (2002) Dosimetric advantage of using 6 MV over 15 MV photons in conformal therapy of lung cancer: Monte Carlo studies in patient geometries. Journal of Applied Clinical Medical Physics, 3(1): 51-9. [DOI:10.1120/jacmp.v3i1.2592] [PMID] []
3. Xu N, Rossi PJ, Jani AB (2011) Toxicity analysis of dose escalation from 75.6 gy to 81.0 gy in prostate cancer. American Journal of Clinical Oncology, 34(1): 11-5. [DOI:10.1097/COC.0b013e3181cae8c6] [PMID]
4. Leibel SA, Fuks Z, Zelefsky MJ, Wolden SL, Rosenzweig KE, et al. (2002) Alektiar KM, Hunt MA, Yorke ED, Hong LX, Amols HI, Burman CM. Intensity-modulated radiotherapy. The Cancer Journal, 8(2): 164-76. [DOI:10.1097/00130404-200203000-00010] [PMID]
5. Howell RM, Hertel NE, Wang Z, Hutchinson J, Fullerton GD (2006) Calculation of effective dose from measurements of secondary neutron spectra and scattered photon dose from dynamic MLC IMRT for, and beam energies. Medical Physics, 33(2): 360-8. [DOI:10.1118/1.2140119] [PMID]
6. Laughlin JS, Mohan R, Kutcher GJ (1986) Choice of optimum megavoltage for accelerators for photon beam treatment. Int J Radiat Oncol Biolo Phys, 12(9): 1551-7. [DOI:10.1016/0360-3016(86)90277-4]
7. Welsh JS, Mackie TR, Limmer JP (2007) High-energy photons in IMRT: uncertainties and risks for questionable gain. Technology in Cancer Research & Treatment, 6(2): 147-9. [DOI:10.1177/153303460700600212] [PMID]
8. Sun M and Ma L (2006) Treatment of exceptionally large prostate cancer patients with low‐energy intensity‐modulated photons. Journal of Applied Clinical Medical Physics, 7(4): 43-9. [DOI:10.1120/jacmp.v7i4.2263] [PMID] []
9. Chow JC, Grigorov GN, Barnett RB (2006) Study on surface dose generated in prostate intensity-modulated radiation therapy treatment. Medical Dosimetry, 31(4): 249-58. [DOI:10.1016/j.meddos.2005.07.002] [PMID]
10. Hall EJ and Wuu CS (2003) Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biolo Phys, 56(1): 83-8. [DOI:10.1016/S0360-3016(03)00073-7]
11. Eldesoky I, Attalla EM, Elshemey WM (2013) The dosimetric effects of different beam energy on physical dose distributions in IMRT based on analysis of physical indices. Journal of Cancer Therapy, 4(11): 33. [DOI:10.4236/jct.2013.411A005]
12. Akpati H, Kim C, Kim B, Park T, Meek A (2008) Unified dosimetry index (UDI): a figure of merit for ranking treatment plans. Journal of Applied Clinical Medical Physics, 9(3): 99-10. [DOI:10.1120/jacmp.v9i3.2803] [PMID] []
13. Wu Q, Mohan R, Morris M, Lauve A, Schmidt-Ullrich R (2003) Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas. I: dosimetric results. Int J Radiat Oncol Biolo Phys, 56(2): 573-85. [DOI:10.1016/S0360-3016(02)04617-5] [PMID]
14. Uysal B, Beyzadeoğlu M, Sager Ö, Dinçoğlan F, Demiral S, et al. (2013) Dosimetric evaluation of intensity modulated radiotherapy and 4-field 3-D conformal radiotherapy in prostate cancer treatment. Balkan Medical Journal, 2013(1): 54-7. [DOI:10.5152/balkanmedj.2012.075] [PMID] []
15. Sternick ES, Bleier AR, Carol MP, Curran BH, et al. (1997) Intensity modulated radiation therapy: what photon energy is best. InPresentation at The XIIth international conference on the use of computers in radiation therapy. ICCR, 1997.
16. Pirzkall A, Carol MP, Pickett B, Xia P, Roach III M, Verhey LJ (2002) The effect of beam energy and number of fields on photon-based IMRT for deep-seated targets. Int J Radiat Oncol Biolo Phys, 53(2): 434-42. [DOI:10.1016/S0360-3016(02)02750-5]
17. Chow JC, Grigorov GN, Barnett RB (2006) Study on surface dose generated in prostate intensity-modulated radiation therapy treatment. Medical Dosimetry, 31(4): 249-58. [DOI:10.1016/j.meddos.2005.07.002] [PMID]
18. Sung WM, Park JM, Choi CH, Ha SW, Ye SJ (2012) The effect of photon energy on intensity-modulated radiation therapy (IMRT) plans for prostate cancer. Radiation Oncology Journal, 30(1): 27-35. [DOI:10.3857/roj.2012.30.1.27] [PMID] []
19. Park JM, Choi CH, Ha SW, Ye SJ (2012) The dosimetric effect of mixed‐energy IMRT plans for prostate cancer. Journal of Applied Clinical Medical Physics, 12(4): 147-57. [DOI:10.1120/jacmp.v12i4.3563] [PMID] []
20. Laughlin JS, Mohan R, Kutcher GJ (1986) Choice of optimum megavoltage for accelerators for photon beam treatment. Int J Radiat Oncol Biolo Phys, 12(9): 1551-7. [DOI:10.1016/0360-3016(86)90277-4]
21. Söderström S, Gustafsson A, Brahme A (1995) Few‐field radiation therapy optimization in the phase space of complication‐free tumor control. International Journal of Imaging Systems and Technology, 6(1): 91-103. [DOI:10.1002/ima.1850060112]
22. Gudowska I and Brahme A (1996) Neutron radiation from high-energy X-ray medical accelerators. Nukleonika, 41(2): 105-18.
23. Waller EJ (2003) Neutron production associated with radiotherapy linear accelerators using intensity modulated radiation therapy mode. Health Physics, 85: S75-7. [DOI:10.1097/00004032-200311002-00006] [PMID]
24. Park JM, Choi CH, Ha SW, Ye SJ (2011) The dosimetric effect of mixed‐energy IMRT plans for prostate cancer. Journal of Applied Clinical Medical Physics, 12(4): 147-57. [DOI:10.1120/jacmp.v12i4.3563] [PMID] []
25. Sung WM, Park JM, Choi CH, Ha SW, Ye SJ (2012) The effect of photon energy on intensity-modulated radiation therapy (IMRT) plans for prostate cancer. Radiation Oncology Journal, 30(1): 27-35. [DOI:10.3857/roj.2012.30.1.27] [PMID] []
26. Abdul Haneefa K, Shakir KK, Siddhartha A, Cyriac TS, et al. (2014) Dosimetric studies of mixed energy intensity modulated radiation therapy for prostate cancer treatments. Journal of Radiotherapy, 16: 2014. [DOI:10.1155/2014/760206]
27. Kry SF, Salehpour M, Followill DS, Stovall M, et al. (2005) The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. Int J Radiat Oncol Biolo Phys, 62(4):1195-203. [DOI:10.1016/j.ijrobp.2005.03.053] [PMID]
28. Söderström S, Eklöf A, Brahme A (1999) Aspects on the optimal photon beam energy for radiation therapy. Acta Oncologica, 38(2): 179-87. [DOI:10.1080/028418699431591] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hridya V, Khanna D, Aswathi R, Padmanabhan S, Mohandass P. A study to evaluate optimal plan through different photon energies and their combination in oesophageal intensity modulated radiotherapy. Int J Radiat Res 2023; 21 (2) :337-342
URL: http://ijrr.com/article-1-4776-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 2 (4-2023) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4700