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ABSTRACT

Generative Adversarial Networks (GANs) have emerged as powerful tools within the
realm of deep learning, particularly in the synthesis of artificial images, a capability
that holds immense promise in the field of medical image-to-image translation. Recent
years have witnessed significant strides in GAN development tailored for cross-domain
image translation, largely driven by the availability of extensive datasets containing
meticulously annotated medical images. Nonetheless, the process of annotating these
images poses a formidable challenge, demanding a substantial number of specialized
experts for supervised methods. To surmount this obstacle, cross-modality synthesis
techniques have gained traction, offering an efficient approach to mitigate the
complexities and costs associated with acquiring paired training data. This paper
serves as an introductory exploration into the diverse array of GAN variants employed
in image-to-image translation, subsequently delving into their applications within
medical imaging. Specifically, it investigates the realms of cross-modality synthesis and
conditional image synthesis, shedding light on their potential to revolutionize
diagnostic precision and streamline the intricacies of medical imaging processes.

# These authors contributed equally
to this work.

INTRODUCTION

Delivering superior-quality images of bodily
organs and soft tissues holds significant importance
in enhancing disease diagnosis and treatment across
the medical field. Additionally, specific conditions,
such as Alzheimer’s disease, may evade detection
when using low-resolution images (. 2. Common
medical imaging modalities encompass Magnetic
Resonance Imaging (MRI), Computed Tomography
(CT), nultrasonography, and Positron Emission
Tomography (PET). Each modality presents unique
challenges regarding imaging, dimensions,
processing, and recording. Despite significant
advancements, challenges persist in generating high-
fidelity images, integrating dual-modal imaging like
CT/PET, and automating medical image processing
4,

In recent times, the medical community has
shown growing interest in automating the processing
of medical images and generating artificial images.
Machine learning systems have played a pivotal role
in complex decision-making for medical image
analysis and synthetic data generation from the

outset. However, the success of these systems heavily
relies on access to extensive sets of labelled training
data. Additionally, the process of generating medical
data is laborious, time-intensive, and expensive,
particularly when it comes to labelling medical
images ). In 2014, lan Goodfellow transformed the
landscape of synthetic image generation by unveiling
the deep learning framework known as Generative
Adversarial Networks (GANs) (6). GANs have unlocked
new avenues for bridging the gap between image
generation and supervised techniques due to their
capability to replicate data distributions and generate
images with unprecedented levels of detail and
realism.

All GAN models work on the basis that the
Generator makes an attempt to generate data
utilizing a probabilistic input. As part of its task, the
Discriminator Network strives to tell whether data
input is real or fake by taking input either from the
generator or from real sources. In addition to
generating synthetic medical images, GAN models are
used by radiologists for other challenges in medical
imaging such as reconstruction, classification,
segmentation, registration, detection, and denoising
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(figure 1) .7,

In this review paper, conditional GAN models
employed by physicians and radiologists to
synthesize medical images and their potential
applications are reviewed. Also, various medical
studies in the field of image-to-image translation are
discussed, which today have a promising role in the
synthesis of medical images. A discussion of the
advantages, disadvantages, and challenges of using
these frameworks is also included.

The novelty of this article lies in its
comprehensive review and critical evaluation of the
transformative role of GANs in cross-modality
medical imaging, emphasizing both technical
advancements and clinical implications. Unlike
existing reviews that often focus on single cross-
modality translations, this article covers multiple
modalities, including MRI-to-CT, CT-to-MRI, PET-to-
CT, and MRI-to-PET, etc. It provides a holistic view of
GAN applications across radiotherapy, oncology, and
neurodegenerative disease diagnostics, enhancing
diagnostic  accuracy, improving soft tissue
visualization, and reducing radiation exposure. The
article also addresses key challenges in clinical trust
regarding GAN-generated images, including the
"black-box" nature of GANs, the need for
standardized evaluation metrics, and the potential for
anatomical inaccuracies. Furthermore, the article
offers a balanced perspective on both the advantages
and limitations of GANSs, particularly in tackling data
scarcity and producing high-quality synthetic images.
By discussing the challenges related to
interpretability and clinical adoption, it provides a
nuanced view that adds depth to the review. The
article also emphasizes the need for collaboration
between Al developers, clinicians, and radiologists,
presenting a novel interdisciplinary approach to
integrating GANs into real-world clinical workflows.
It bridges gaps between technical studies and clinical
applicability, contributing significantly to the field of
GAN-based medical imaging and offering a roadmap
for overcoming barriers to clinical adoption. This
broader, integrative perspective makes the article a
valuable contribution to both medical and Al
research communities.

- Segmentation

Figure 1. Different
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Applications of GANs in medical image-to-image
translation

The GANs present a more accurate and better
solution for augmenting training medical images and
have been shown to lead to impressive effects.
Therefore, the Research Community in the medical
field has become increasingly interested in GANs as
an approach to generating realistic medical images.
The conditional GANs models have been able to help
with important limitations such as restricting access
to medical images for research purposes, improving
image resolution, and reducing costs (. This paper
evaluates the utility of using GAN-generated data for
medical imaging and its richness and benefits. In this
section, the performance of conditional GAN models
in different modalities such as MR, CT, PET, etc, and
the methods of image-to-image translation are
reported (figure 2).
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Figure 2. Examples of cross modality image to image
translation. a) From left to right, MR image, CT, sCT and
difference (CT — sCT). The images on top represent the axial
plane, on the bottom, the frontal plane ), b) The
intermediate results of the real, synthesized, and
reconstructed images 12 c) Sample results of the predicted
PET using paper’s method compared to the real PET with the
corresponding CT images 3 d) Generated MR images from
amyloid PET images ()
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Cross-modality synthesis, such as generating CT-
equivalent images based on MR images, offers several
advantages, including cost and time savings.
However, the process of mapping between multiple
domains is complex. A key challenge is the difficulty
in obtaining paired images, as corresponding images
may not always be available . Image-to-image
translation methods are broadly classified into
supervised and unsupervised approaches. Pix2Pix
belongs to the supervised category, utilizing paired
images to learn a one-to-one mapping. It operates
with two datasets: one serving as input and the other

799

as the corresponding output. In contrast,
unsupervised image-to-image translation does not
rely on paired images to learn mappings between
domains, making it a more commonly employed
approach. CycleGAN and UNIT are two unsupervised
methods used in more broad applications.
Consequently, using these methods, a synthetic image
of the target modality can be obtained by using the
existing modality image and preserving all the
anatomical structures or features (10, Table 1
summarizes the articles related to the cross-modality
synthesis of medical images.

Table 1. Cross-Modality synthesis.

Modality Method Dataset Remarks Year| References
Gold Atlas project . Kevin N D Brou
CGAN (https://zenodo.org/record/583096) Pelvic 2020 Boni et a/, *Y
SpineWeb Library . Oulbacha et al.
CycleGAN (http://spineweb.digitalimaginggroup.ca) Lumbar Spine 2020 49)
MR-CT image data of 10 volunteers enrolled in an IRB-
ACGAN approved study at University Hospitals Cleveland Medical Abdomen 2020| Qian et a/. *®
Center.
. | Gold Atlas project (https://aapm.onlinelibrary.wiley.com/ L .
Augmentation| /16 1002 /mp.12748), Institut Jules Bordet (IJB), Centre | /Vic With prostate ., ) |Brou Boni ez a/
of CycleGAN or rectal cancer
Oscar Lambret (COL)
Real MRI/CT pairs head and neck imaging volumes coming
MR > CT cGAN from 36 paheqts (depart’mept of'rzf\dlatlon ongology a.t the Head and Neck 12021 |Touati et a/ ©?
Center Hospitalier de I’'Université de Montréal), sagital
slices of 20 different patients
Weakly paired data from 90 cancer patients including CT Pelvis. Thorax and
CycleGAN and MR images of the pelvis, thorax, and abdomen ’ 2021| Kang et al. 53]
Abdomen
CT and MR images of head, neck and shoulder submitted to
Multi-Cycle Research Data Deposit (RDD) platform (www. Head, Neck and 2021| Liu etal
GAN researchdata.org.cn), with approval RDD number as Shoulder ’
RDDA2021001910.
MR and CT volumes of 19 subjects (https:// . (16)
RTCGAN | 1 2pm.onlinelibrary.wiley.com/doi/10.1002/mp.12748) Pelvic 2023| Zhao et al.
Brain CT and MR images of 202 patients approved by the
MR-GAN Institutional Review Board (IRB) of the Pusan National Brain 2019| Jin eral ®?
University Hospital, South Korea (IRB No. 1808-008-069)
94 paired CT and MR scans as part of the ISLES 2018 . . (17)
CT > MR CGAN Ischemic Stroke Lesion Segmentation Challenge Brain 2013 | Rubin et a/.
9 healthy subjects for this IRB approved study including
ACGAN three types of MR images (i.e., fat, water and R2) and a Brain 2020| Yang et al *®
corresponding CT scan
GAN - Brain 2022[ Huetal™
Muscles around
CycleGAN ; thigh, hip, pelvis, 1,1 al 1iaca er a7 ©
sacrum and femur
bones
MR <> CT |_CycleGAN Two-stage training and synthesis for abdominal image | Abdominal, Brain [2019| Huo et a/ ™
Paired dataset: 367 MR-CT brain images from 18 patients
(https://aapm.onlinelibrary.wiley.com/doi/10.1002/ )
uagGAN mp.12155) Brain 2021[Abu-Srhan et al.
Unpaired dataset: MR-CT brain images from the Radiology
Department of the Jordan University Hospital (JUH)
FCN+CGAN 25 pairs of PET/CT images Liver 2017 Be“f/o(?ﬁ” et
CT-> PET FCN+cGAN 60 PET/CT scans from Sheba Medical center Liver 2019 Ben—g/o(q%n et
TransGAN IXI dataset Brain 2022| Lietal™
cGAN, PET/CT images of 50 patients (SOMATOM mCT, Siemens . Armanious et
. Brain 2018 (23)
PET = CT MedGAN Healthineers, Germany) al.
cGAN 50 PET-CT studies from 50 lung cancer patients Whole-body 2019| Dong et al. ™"
WGAN  [fortyfive sets of patient samples (26 males and 19 females)| Whole-body  [2020| Hu et a/ ™
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Table 1. continued. Cross-Modality synthesis.
Modality Method Dataset Remarks Year| References
BMGAN ADNI (http://adni.loni.usc.eduy) Brain 2020| Hu etal ™
MR - PET|  GLA-GAN ADNI-1 and ADNI-2 (http://adni.loni.usc.eduy) Brain 2021] Sikka et al ®”
BPGAN ADNI (http://adni.loni.usc.edu/) Brain 2022| Zhang et al. ™
pix2pix ADNI (http://adni.loni.usc.edu/) Brain 2017| Choi et al. ™
PET > MR E-GAN ADNI (http://adni.loni.usc.edu/) Brain 2022 Bazang(?gr)n etal
cycleGAN the MIDAS dataset, the IXI dataset, the BRATS dataset Brain 2019| Dar etal ™
rsGAN the MIDAS dataset, the IXI dataset, the BRATS dataset Brain 2020| Dar etal.®”
. . Baogiang Ma ef|
o™ da-GAN Kulaga-Yoskovitz Brain 2020 2/ B
MR mustGAN IXI Dataset, ISLES Dataset Brain 2021] Yurt et al ™"
. . Kawahara &
GAN 2,024 images scanned Brain 2021 Nagata (56)
cGAN - Brain 2022| Panetal ™
Ea-GANs The BRATS2015 and the non-skull stripped IXI Brain 2019 Yuetal®™¥
T1-> mustGAN IXI Dataset , ISLES Dataset Brain 2019] Yurt etal ™
FLAIR MR pix2pix 3220 MRI scans in 1450 patients with brain tumors Brain 2021| Cont et a/, *®
Pix2pix IXI dataset Brain 2018/ Olut et al *¥
TIMLZAé DC GAN &
WGAN-GP - Brain 2020|Kossen et al. *)
& WGAN-GP-SN
Cascade GAN - Brain 2018| Nie etal ™
3T > 7T |cycle GAN (semi- . . L . (47)
MR supervised) 15 pairs of 3T and 7T T1 weighted MR brain images Brain 2019| Qu etal
SynGAN 33 healthy volunteers and 89 patients Brain 2023| Duan et al.™
CycleGAN CBCT images of 45 patients Head anigﬁ?ﬁ' thorax, 2020| Eckl et al, ®?
CycleGAN CBCT images of 30 patients Pancreas 2020| Liu etal ™
CycleGAN 12000 slice pairs of CT and CBCT Pelvic head-and-neck [2020|Zhang et al. ®¥
cBCT->CT Cycle-Deblur
- - - (35)
GAN & CycleGAN 9856 CBCT images Chest 2021| Tien et al.
CycleGAN 120 paired CBCT images Head and neck cancer [2022|Zhang et a/.
DASGAN - Digital Pathology  [2019] Kapil et a/ ©”
Domain CycleGAN HAM , MoleMap Skin 2020| Gu etal®”
adaption WGAN REFUGE , Drishti-GS1 Eye (Benngl Fundus 2020 Kadar?alg)l etal
imaging)
MR - CT methodology that combines Convolutional Neural

Kevin et al (2020) proposed a novel multi-scale
approach using conditional GAN (cGAN) with paired
data to generate synthetic CT images from MRIs
across multiple sites, focusing on cases of rectal or
prostate cancer with CT and pelvic MR images from
the Gold Atlas project dataset. Despite the limited
dataset, the study achieved high efficiency through a
combination of feature matching loss and LSGAN loss
(11),

In 2021, Liu et al. introduced a Multi-Cycle GAN
technique for synthesizing head and neck region CT
images from MRI scans, employing a Pseudo-Cycle
Consistent module to enhance target generator
performance and a domain control module to
improve stability and image quality. Utilizing Z-Net to
replace the generator yielded enhanced performance
and synthesis accuracy, with exceptional results in
synthetic accuracy and image quality, requiring no
additional computational resources or time (15,

Zhao et al. (2023) presented the Residual
Transformer Conditional GAN (RTCGAN), a new

Networks (CNN) to refine local texture details and
Transformer for enhancing global correlations in
extracting multi-level features from MR and CT
images. Additionally, this study employs feature
reconstruction loss to regulate potential image
features, mitigate over-smoothing, and minimize local
distortion in the generated CT images. Experimental
findings indicate that RTCGAN yields visually more
aligned results with reference CT images and delivers
promising results in mitigating local mismatches in
tissues (16),

CT - MR

Rubin et al. (2019) used the conditional mapping
method by training GANs that are able to map
computed tomography perfusion (CTP) infarcted
zones to clearly delineate hyperintense areas in
produced MR images. The dataset used in this study
consisted of 94 paired MR and CT scans. Results
showed that the infarcted core regions can be
accurately mapped to the hyperintensities aligned
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with the ground-truth MR ‘s corresponding areas by
using the CGAN model. And also segmentation
performance quantitatively improved in this method
),

Yang et al. (2020) introduced CAE-ACGAN, a novel
GAN-based method merging Auxiliary Classifier
Generative Adversarial Network (ACGAN) and
Variational Auto-Encoder (VAE) strengths. Applied to
CT to MR image translation using brain datasets from
nine healthy subjects, approved by the Institutional
Review Board (IRB), the approach surpassed WGAN-
GP and pix2pix, achieving superior accuracy while
preserving clear anatomical topography and internal
organ structures' gross features (18),

In another study, Hu et al. (2022) utilized a GAN
model to produce synthetic MR brain images from the
corresponding CTs in patients with suspected acute
ischemic stroke and investigated the possibility of
detecting suspected lesions using synthetic MRI
images. The introduced model achieved high
performance in translating non-contrast CT images to
synthetic MR and demonstrated considerable
accuracy in detecting patients with suspected acute
ischemic stroke (19).

MR & CT

Hiasa et al (2018) expanded the CycleGAN
method by incorporating gradient consistency (GC)
loss to improve images edge alignment in two
domains (613 CT and 302 MR volumes) to overcome
wide ranges of data and accuracy enhancement. The
results showed that a lot of the training data resulted
in statistically remarkable enhancements based on
paired t-tests in Mutual information. The gradient
consistency loss also led to a raise in mutual
information between the MR and the synthetic CTs (9.

In 2019, Huo et al introduced SynSeg-Net, an end-
to-end synthetic segmentation network capable of
training on target imaging modalities without manual
labelling. SynSeg-Net utilizes unpaired intensity
images from both target and source domains, with
manual labels solely in the source domain.
Integration of CycleGAN and Deep Convolutional
Neural Networks (DCNN) facilitated SynSeg-Net's
development. Evaluation, based on Dice similarity
coefficient (DSC), compared segmentation outcomes
against ground truth across different methods.
Performance assessment involved two experiments:
(1) MRI to CT abdominal images and (2) CT to MRI
brain images, with SynSeg-Net achieving notably high
performance relative to other methods, particularly
when utilizing target modality labels (12).

In 2021, Abu-Srhan et al introduced the
Unsupervised  Attention  Guided  Generative
Adversarial Network (uagGAN) approach, designed
to translate CT images to MR images and vice versa
using small-sized datasets, both paired and unpaired.
This model addresses the misalignment issue
inherent in unpaired training and mitigates the

challenge of generating blurred images during paired
data training. The outcomes demonstrate the model’s
high efficiency in MR-to-CT image translation.
However, further improvements are needed for CT-to
-MR image translation (29,

CT - PET

In oncology, diagnosis and classification are
regularly made based on PET images. Moreover, PET
and CT imaging have become key assessment
apparatus for drug development. Furthermore, in
recent years, many medical imaging analysts have
been trying to produce artificial PET data in a direct
way from CT images, because PET devices are costly
and include radioactivity, and in this way put patients
in danger (13).

In 2017, Ben-Cohen et al. utilized fully
convolutional networks (FCN) in conjunction with
conditional generative adversarial networks (cGAN)
to anticipate PET-like images from CT images. The
cGAN model was constructed following the
framework introduced by Isola et al. This approach
successfully achieved high tumor detection rates
through the use of synthetic PET images generated
from the cGAN combined with FCN (21),

In another study, Ben-Cohen et al. (2019)
employed 60 PET/CT scans from the Sheba Medical
Center dataset to generate synthetic PET images of
the liver using the FCN-cGAN model. By integrating
this model with an existing lesion detection software,
positive outcomes were observed in terms of both
restoration measures and detection measures (13),

Another study introduced a transformer-
enhanced GAN for generating synthetic CT images
from PET scans and introduced a loss function based
on image gradient differences to enhance the quality
of the generated CT images (22).

PET - CT

The study published in 2018, introduced a new
GAN-based method, called MedGAN. Armanious et al.
used different models for the translation of medical
images, which are based on an end-to-end approach.
The results showed that the MedGAN framework has
the most adequate performance in translating PET
images into artificial CT images. Also, it was
determined that the classic adversarial loss CGAN is
ineffective (23),

Dong et al. (2019) used CycleGAN model to
generate synthesize CT images from whole-body NAC
PET. The synthesized CT images show high similarity
to real CT images and strong contrast on lungs, soft
tissues, and bone. In the absence of structural details,
this model shows tremendous potential for whole-
body PET attenuation correction (24,

PET imaging necessitates CT imaging for precise
anatomical delineation and attenuation correction
(AC) maps, crucial for accurate PET quantification,
albeit escalating ionizing radiation exposure. In 2020,
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Hu et al introduced a WGAN model to mitigate
radiation dosage while acquiring high-resolution PET
and CT data concurrently. The model first addresses
noise and artifacts in non-attenuation-corrected
(NAC) PET data to produce synthetic AC PET images
for whole-body PET/CT scans. It subsequently
synthesizes CT images from the synthetic AC PET
images obtained in the initial stage (25).

MR - PET

Hu et al (2020) proposed Bidirectional Mapping
GAN (BMGAN), an end-to-end 3D network, that latent
vector and image contexts were efficiently applied
and optimized to predict PET brain images from MR
images. The model is evaluated on a subset of the
ADNI database. Both quantitative and qualitative
results prove the advantages of utilizing 3D
convolutional operations instead of the common 2D
operations. The experimental results demonstrated
the effectiveness of the method in generating high-
quality  synthetic images, wunderscoring the
significance of adversarial training in 3D BMGAN. The
advantages of the proposed BMGAN are clearly
shown in this scenario. The proposed network has
shown acceptable performance for MR to PET
translation task (26).

In another study, Sikka et al. (2021) introduced a
globally and locally aware GAN model for MRI to PET
cross-modality image translation in order to facilitate
diagnosis of. Experimental results show the
advantage of GLA-GAN both in generating synthetic
PET images with enhanced quality and utility in
clinical studies for improving Alzheimer’s disease
diagnosis compared to other novel models (27).

In 2022, Zhang et al. noted that multi-modal
medical images, such as MRI and PET scans, are
commonly used for diagnosing brain disorders like
Alzheimer's disease. A novel method called BPGAN is
proposed for synthesizing PET scans from MRI
images, improving the accuracy of AD diagnosis. The
experimental findings reveal that the synthetic PET
images generated by BPGAN exhibit high quality and
offer complementary information for Alzheimer's
disease (AD) diagnosis. The proposed method
surpasses other state-of-the-art techniques by
generating diverse and high-quality PET scans (28).

PET - MR

Choi et al. (2018) developed a model to translate
amyloid PET images into structural MR images,
trained on paired data comprising MR images and
amyloid PET scans from Alzheimer's disease (AD)
and mild cognitive impairment (MCI) patients, as
well as normal controls. Utilizing a model
architecture featuring two convolutional neural
networks, a discriminator, and a generator, data from
the ADNI database were gathered. Results indicated
that normal PET template-based and PET
segmentation-based models exhibited greater bias in

AD patients, whereas the multi-atlas-based model
demonstrated less bias than the former. Furthermore,
both normal PET template-based and PET
segmentation-based models showed significant
underestimation compared to MR-based models,
regardless of the subject's diagnosis or cortical
regions of interest (14),

Bazangani et al (2022) introduced a cross-
modality generation technique termed Elicit
Generative Adversarial Network (E-GAN) to tackle
challenges related to insufficient databases and
unbalanced data in medical image applications. Key
innovations include the implementation of separable
convolution for learning 3D features, a fusion strategy
resembling a self-attention mechanism, integration of
a Sobel filter for conveying geometrical information,
and the adoption of a weighted version of a hybrid
loss function to enhance learning stability. Evaluation
results demonstrate superior performance in
capturing both structural and textural information
compared to existing methods. However, limitations
such as prolonged training times due to feature
mixing operations and the utilization of a min-max
strategy were noted (29),

CBCT-CT

Cone-Beam Computed Tomography (CBCT)
images are used to measure the dose of adaptive
radiation therapy. Physicians' challenges in this area
are inaccurate Hounsfield units (HU) and large
artifacts (30). The ideal solution to these challenges is
to produce CT images from CBCT images. Using
deformed planning CT images leads to artifacts’
significant decrease and HU values corrected while
maintaining anatomical accuracy. Currently, the GAN
models have illustrated considerable success in image
-to-image translation tasks (1),

Eckl et al. (2020) utilized a cycleGAN-based
method for CBCT to synthetic CT conversion,
assessing image quality, dosimetric accuracy, and
segmentation on a dataset of 15 patients. Despite
closely resembling pCT images and exhibiting
accurate dosimetry, the model faced challenges
regarding low soft-tissue contrast (32).

Similarly, Liu et al. (2020) employed CycleGAN to
generate CBCT-based sCT images, employing a patch-
based approach for image generation and achieving
comparable accuracy to planning CT for dose
calculation (33).

Zhang et al (2020) explored Al-driven
enhancement of CBCT image quality using an
unsupervised deep-learning method, demonstrating
effectiveness through metrics like MAE of Hounsfield
units and PSNR, offering efficiency gains in terms of
time and cost (34).

In 2022, Tian et al. applied conditional GANs to
synthesize CT images from CBCT scans of head and
neck cancer patients, conducting a comparative
evaluation with U-Net and CycleGAN to assess
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synthetic CT image quality (35).

Domain adaption

Kapil et al (2019) introduced an end-to-end
training framework called DASGAN (Domain
Adaptation and Segmentation GAN), which
simultaneously conducts semantic segmentation and
unpaired image-to-image translation. The training
dataset comprised 56 stained whole slide images
(WSI) of non-small cell lung cancer (NSCLC) subjects
and 69 whole slide images of the same indication
stained with the SP263 PD-L1 clone. These images
were unpaired and originated from two independent
patient cohorts. DASGAN facilitated the optimization
of domain transfer networks, aiming to generate
realistic PD-L1 images while enhancing the
performance of the segmentation network 36).

Gu et al. (2020) proposed employing a CycleGAN
as a domain adaptation technique and novel cross-
domain recognition method for skin disease imaging
translation between datasets. The study utilized HAM
and MoleMap datasets to validate the approach,
revealing improved model performance with
CycleGAN domain adaptation. However, despite
minimizing distribution shift, residual variances
persisted due to factors such as labelling noise, which
remained unrecoverable 37),

Kadambi et al, 2020 presented a segmentation
approach based on domain adaptation utilizing
Wasserstein distance inspired by WGAN adversarial
domain adaptation for classification tasks. Utilizing
REFUGE and Drishti-GS1 datasets, the method
demonstrated higher Dice and 10U for cup and disc
segmentation compared to neural network's domain-
adversarial training and adversarial discriminative
domain adaptation, with more pronounced
improvements over direct transfer learning.
Efficiency was notably enhanced compared to other
patch-based discriminator methods (38).

T1 & T2 MR

In medical imaging, physicians use T1-weighted
images to examine organs such as white and gray
matter of the brain. T2-weighted images provide
physicians with more complete and accurate
information about fluid and cortical tissues. However,
multi-contrast imaging is often impractical due to
limited scan time or excessive artifacts related to
patient movement. Therefore, the use of artificial
intelligence models can be efficient (39).

A study working on the image contrast is one
conducted by Dar et al., (2019). They introduced a
method performing end-to-end training, working on
multi-contrast MRI synthesis utilizing cGANs. This
method employed images of the source contrast to
create target contrast. Their proposed method
demonstrated a promising performance regarding
multi-contrast MRI synthesis in clinical practice (40).

Dar et al, (2020), introduced a novel method for

under sampled multi-contrast acquisitions using
reconstructing-synthesizing GAN (rsGAN). Their
method represented a high-level performance
compared to pure reconstruction and synthesis
methods, boosting the quality and scan efficiency of
multi-contrast MRI exams 39),

In their study in 2021, Yurt et al. also worked on
T2-weighted image synthesis from T1-weighted
images. To do this, they employed a multi-stream
GAN architecture (mustGAN). In this method, the
information from multiple source contrasts is
accumulated through a combination of multiple one-
to-one streams and a joint many-to-one stream. The
advantage of this method is that it presents a higher
performance in terms of quantity and quality (1.

T1 - FLAIR MR

In 2019, Yu et al. introduced Edge-Aware
Generative Adversarial Networks (Ea-GANs), which
serve the purpose of translating T1-weighted images
into FLAIR-MR images. These networks incorporate
edge information, which reflects the textural
structure of image content and delineates the borders
of various objects, thereby reducing gaps. The model
consists of a generator-induced Ea-GAN (gEa-GAN)
and a discriminator-induced Ea-GAN (dEa-GAN). Both
frameworks utilize their generators to integrate the
edge information, with dEa-GAN additionally
employing its discriminator (42),

Also, Yurtet al. (2019) used a different method of
GAN for generating FLAIR image synthesis from T1-
and T2-weighted images. The mustGAN can enhance
the synthesis accuracy in numerous regions that are
suboptimally recovered by competing methods by
capturing information from both one-to-one and
many-to-one streams. As a whole, mustGAN decrease
noise and artifacts of fake images of white-matter of
brain tissues, and provide more accurate
representations of gray-matter tissue boundaries (41),

Cont et al (2021) devised a GAN to generate
missing FLAIR images from T1-weighted images,
intended for utilization in a brain tumor
segmentation model that necessitated multiple MRI
series (43),

T1, T2 - MRA

In 2018, Olut et al. showcased an sGAN approach
for generating magnetic resonance angiography
(MRA) contrast from multi-contrast T1- and T2-
weighted MRI data, relying on spin-lattice and spin-
spin relaxation effects. Their study revealed that the
SGAN outperformed the standard GAN method in
terms of comparable PSNR values and enhanced
visual perceptual quality (4.

In 2020, Kossen et al. conducted a study focusing
on MRA among various modalities. Their research
centered on training three GAN frameworks using a
dataset of subjects with cerebrovascular disease. The
study design involved training DCGAN, Wasserstein-
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GAN with gradient penalty (WGAN-GP), and WGAN-
GP with spectral normalization (WGAN-GP-SN) on
time-of-flight (TOF) MRA patches to generate image-
label pairs. Performance evaluation occurred in two
stages: first, through visual inspection and
quantitative comparison to real data, and second, by
employing the "half U-net" and classical
augmentation techniques. The results evolution

indicated the superior performance of WGAN-GP-SN
(5),

3T - 7T MR

For generating artificial medical images, Nie et al.
in 2018 presented the supervised GAN. Their
presented model comprised a generator network
which is a fully convolutional network and
discriminator network which is a CNN. Fully
convolutional network was planned to include an
image-gradient-difference that led to creating more
real-like target images. In addition, a context-aware
convolutional adversarial network was performed
utilizing the Auto-Context Model. The designed
model was just employed for 3T-to-7T synthesis task.
The accuracy obtained by this model was acceptable
(46),

In 2019, Qu et al. designed a new approach based
on information in both spatial and wavelet domains
using Semi Wave framework for 7T MR image
synthesis. This framework is a semi-supervised
cycleGAN. The first mapping function of cycleGAN is a
basic 3T-to-7T mapping and another is a twofold 3T-
to-7T mapping. This model consists of a wavelet
coefficient extractor and two associated adversarial
discriminators. Thorough qualitative and
quantitative tests demonstrated better 7T MR images
in terms of anatomical details compare with fully-
supervised methods (47).

In 2023, Duan et al. demonstrated the feasibility
of generating synthetic 7T images with similar

quality to acquired 7T images using a synGAN model
(48),

DISCUSSION

The reviewed literature highlights the
transformative potential of Generative Adversarial
Networks (GANs) in cross-modality medical imaging.
For MRI-to-CT translation, models such as CycleGAN
and Residual Transformer Conditional GAN
(RTCGAN) have shown the ability to produce high-
quality synthetic CT images that align closely with
reference CTs, aiding applications like radiotherapy
planning and reducing patient radiation exposure.
Similarly, CT-to-MRI translation using models like
ACGAN enhances soft tissue visualization and
improves diagnostic precision for conditions like
stroke and oncology (16.18), PET-to-CT and CT-to-PET
conversions demonstrate the value of GANs in
creating synthetic images for attenuation correction

and tumour detection, effectively lowering costs and
minimizing reliance on radiation-heavy imaging
protocols (21.24). MRI-to-PET translation, facilitated by
models like BMGAN, has shown promise in generating
functional PET-like images, enabling non-invasive
diagnostics for neurodegenerative diseases such as
Alzheimer’s (26),

Despite these advancements, challenges persist,
including difficulties in acquiring paired datasets,
computational complexity, and the potential for
anatomical inaccuracies in synthesized images.
Clinician trust in synthetic images remains a
significant hurdle due to the risk of artifacts and the
opaque mechanisms of GAN models (59. However, the
advantages, such as reducing imaging costs,
enhancing diagnostic workflows, and improving
accessibility to advanced imaging techniques, make
GAN-based image synthesis a promising solution for
overcoming current limitations in medical imaging (8).

Challenges

Converting medical images from one modality to
another using Generative Adversarial Networks
(GANs) presents several challenges. The scarcity of
paired data due to variations in patient positioning
and scan timing makes it difficult to train accurate
models, with unpaired translation leading to less
reliable results. Anatomical accuracy is often
compromised during conversion, especially in
complex tissues, as synthesized images may lack fine
details critical for diagnosis. Computational
complexity and the high resource demands of GANs
limit their clinical application, while overfitting can
occur when datasets are small or unrepresentative
20). Additionally, the lack of interpretability and trust
in GAN-generated images, due to their "black-box"
nature and potential for artifacts, remains a
significant hurdle for clinical adoption. Finally, the
absence of standardized evaluation metrics
complicates the assessment of GAN performance in
clinical contexts. Despite these challenges, ongoing
improvements in GAN models continue to enhance
their feasibility for medical image conversion (9.

Advantages

In medical image processing, a GAN model can
produce high-resolution images from low-resolution
medical images and image colouring with more than
90% accuracy. Also, annotating medical images is
very expensive, and medical datasets often suffer
from class imbalances. The aforementioned problems
challenge the use of supervised deep learning
methods. Moreover, transferring learning methods,
like most other areas of machine learning, lack
medical imagery. On the one hand, producing real
images is costly, and on the other hand, traditional
data augmentation techniques can only produce data
that is closely distributed with the original samples.
But, the use of GAN models offers a solution to the
lack of data in medical image analysis. One of the
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main applications of GANs is their use in cross-
modality image synthesis. Sometimes two or more
medical images are needed for a complete diagnosis;
however, the physician’s access is limited due to
some problems. The contrast of more images can
provide necessary and additional information to the
physician. For example, in contrast to T1-weighted
images, T2-weighted images can better distinguish
inflammation from normal tissues and present more
complete information for diagnosis (41).

In addition, to obtain reliable results from
automated image analysis, it is essential to optimize
image quality before extracting diagnostic
information. In some circumstances, it may be
possible to generate additional image information
based on information that has already been collected
without further examination. Hence, the development
of an image translation framework would be useful
for medical professionals and patients; this enhanced
diagnostic efficiency shortens the diagnostic
procedure by minimizing the need for additional
scans. However, it should be noted that translating an
image from one modality to another can be
challenging, with the risk of introducing untrue
information and rendering fake images unreliable for
diagnostic use. Translated images, in some cases, are
used to enhance the quality of further post-
processing tasks rather than to aid in diagnosing.
Translation of PET images to synthetic CT images is
an example where synthesized CT images are not
used directly for analysis and diagnostic purposes,
but rather for PET attenuation correction (AC) (23).

Disadvantages

The use of GAN models sometimes has its
drawbacks and limitations, some of which are
mentioned here. When a model is applied in a
medical environment, it will not be accurate if it does
not take into consideration characteristics that
clinicians consider for prognosis and diagnosis. One
of these disadvantages is poor interpretability due to
the use of deep neural networks to produce synthetic
images in GAN models. Although GANs perform
better than deep neural networks models in many
contexts, they are difficult to interpret; this is the
main problem that prevents practical application
within the medical profession. Also, if the database
does not have enough data, the accuracy of the model
decreases. Designing Gan models, the data flow, and
lost functions to minimize the possibility of collapse
or non-convergence of the model must be designed
carefully (61),

One of the main challenges is to rely on the data
generated by these models and gain the trust of
physicians and radiologists. Especially, the
mechanism of GAN models is not sufficiently
understood. Typically, intensities in medical images
have some meaning. For instance, in CT images, every
intensity can be mapped to the Hounsfield-scale, so

each intensity identifies a specific tissue. These
associations are missing from the current GAN
models leading to distrust of the healthcare system.
However, the outcome in the computer version is
more satisfactory (0),

Future clinical applications of GANs

As we envision future possibilities, GANs can be
used to improve radiology workflow and patient care,
as shown in this paper. The generation of artificial
medical images and image-to-image translation by
GANs could have other wuseful and practical
developments. Among the applications of cGANs that
should be considered in the future in the field of
medical image processing is the addition of makeup
removal presented by Chang et al. (62). This technique
can be used to reduce image artifacts; for example,
improving bone X-ray images by removing artifacts.
It may help radiologists and physicians assess the
details and diagnose fractures and determine bone
healing progress. Another example of the
development of image-to-image translation can be
attributed to the improved restoration of MR.
Children may be less likely to retake their exams if
MRI images acquired with motion artifacts can be
restored; it also reduces the workload of radiologists
(39),

One of the new applications of GANs that was
introduced by Bodnar in 2018 is Generating images
from natural language. The images produced by this
method can create a new approach in the processing
of medical images. For example, using this generated
dataset, medical image classification tasks can be
trained on supervised neural networks (63).

In summary, despite the remarkable results, GANs
still cannot be used as a reliable source for medical
diagnosis. There are many challenges in this regard.
However, despite all this, it cannot be ignored that
GANs are part of the medical future.

Concluding remarks

In conclusion, GANs hold significant potential to
transform medical imaging by enabling efficient
image-to-image translation across modalities,
reducing costs, and improving diagnostic workflows.
Their ability to generate high-quality synthetic
images can enhance clinical decision-making, reduce
patient exposure to radiation, and improve
accessibility to advanced imaging techniques.
However, further validation, optimization, and trust-
building are essential for their widespread clinical
adoption. Overcoming challenges such as data
limitations, computational demands, and the need for
interpretable models will be crucial for integrating
GAN-based solutions into routine medical practice.
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