
International Journal of Radiation Research, July 2025 Volume 23, No 3 

Clinical applications of generative adversarial networks in 
medical image to image translation 

INTRODUCTION 

Delivering superior-quality images of bodily 
organs and soft tissues holds significant importance 
in enhancing disease diagnosis and treatment across 
the medical field. Additionally, specific conditions, 
such as Alzheimer’s disease, may evade detection 
when using low-resolution images (1, 2). Common 
medical imaging modalities encompass Magnetic 
Resonance Imaging (MRI), Computed Tomography 
(CT), ultrasonography, and Positron Emission 
Tomography (PET). Each modality presents unique 
challenges regarding imaging, dimensions, 
processing, and recording. Despite significant 
advancements, challenges persist in generating high-
fidelity images, integrating dual-modal imaging like 
CT/PET, and automating medical image processing (3, 

4). 
In recent times, the medical community has 

shown growing interest in automating the processing 
of medical images and generating artificial images. 
Machine learning systems have played a pivotal role 
in complex decision-making for medical image 
analysis and synthetic data generation from the 

outset. However, the success of these systems heavily 
relies on access to extensive sets of labelled training 
data. Additionally, the process of generating medical 
data is laborious, time-intensive, and expensive, 
particularly when it comes to labelling medical 
images (5). In 2014, Ian Goodfellow transformed the 
landscape of synthetic image generation by unveiling 
the deep learning framework known as Generative 
Adversarial Networks (GANs) (6). GANs have unlocked 
new avenues for bridging the gap between image 
generation and supervised techniques due to their 
capability to replicate data distributions and generate 
images with unprecedented levels of detail and 
realism. 

All GAN models work on the basis that the 
Generator makes an attempt to generate data 
utilizing a probabilistic input. As part of its task, the 
Discriminator Network strives to tell whether data 
input is real or fake by taking input either from the 
generator or from real sources. In addition to 
generating synthetic medical images, GAN models are 
used by radiologists for other challenges in medical 
imaging such as reconstruction, classification, 
segmentation, registration, detection, and denoising 
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ABSTRACT 

Generative Adversarial Networks (GANs) have emerged as powerful tools within the 
realm of deep learning, particularly in the synthesis of artificial images, a capability 
that holds immense promise in the field of medical image-to-image translation. Recent 
years have witnessed significant strides in GAN development tailored for cross-domain 
image translation, largely driven by the availability of extensive datasets containing 
meticulously annotated medical images. Nonetheless, the process of annotating these 
images poses a formidable challenge, demanding a substantial number of specialized 
experts for supervised methods. To surmount this obstacle, cross-modality synthesis 
techniques have gained traction, offering an efficient approach to mitigate the 
complexities and costs associated with acquiring paired training data. This paper 
serves as an introductory exploration into the diverse array of GAN variants employed 
in image-to-image translation, subsequently delving into their applications within 
medical imaging. Specifically, it investigates the realms of cross-modality synthesis and 
conditional image synthesis, shedding light on their potential to revolutionize 
diagnostic precision and streamline the intricacies of medical imaging processes. 
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(figure 1) (4, 7). 
In this review paper, conditional GAN models 

employed by physicians and radiologists to 
synthesize medical images and their potential 
applications are reviewed. Also, various medical 
studies in the field of image-to-image translation are 
discussed, which today have a promising role in the 
synthesis of medical images. A discussion of the 
advantages, disadvantages, and challenges of using 
these frameworks is also included.  

The novelty of this article lies in its 
comprehensive review and critical evaluation of the 
transformative role of GANs in cross-modality 
medical imaging, emphasizing both technical 
advancements and clinical implications. Unlike 
existing reviews that often focus on single cross-
modality translations, this article covers multiple 
modalities, including MRI-to-CT, CT-to-MRI, PET-to-
CT, and MRI-to-PET, etc. It provides a holistic view of 
GAN applications across radiotherapy, oncology, and 
neurodegenerative disease diagnostics, enhancing 
diagnostic accuracy, improving soft tissue 
visualization, and reducing radiation exposure. The 
article also addresses key challenges in clinical trust 
regarding GAN-generated images, including the 
"black-box" nature of GANs, the need for 
standardized evaluation metrics, and the potential for 
anatomical inaccuracies. Furthermore, the article 
offers a balanced perspective on both the advantages 
and limitations of GANs, particularly in tackling data 
scarcity and producing high-quality synthetic images. 
By discussing the challenges related to 
interpretability and clinical adoption, it provides a 
nuanced view that adds depth to the review. The 
article also emphasizes the need for collaboration 
between AI developers, clinicians, and radiologists, 
presenting a novel interdisciplinary approach to 
integrating GANs into real-world clinical workflows. 
It bridges gaps between technical studies and clinical 
applicability, contributing significantly to the field of 
GAN-based medical imaging and offering a roadmap 
for overcoming barriers to clinical adoption. This 
broader, integrative perspective makes the article a 
valuable contribution to both medical and AI 
research communities. 
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Applications of GANs in medical image-to-image 
translation 

The GANs present a more accurate and better 
solution for augmenting training medical images and 
have been shown to lead to impressive effects. 
Therefore, the Research Community in the medical 
field has become increasingly interested in GANs as 
an approach to generating realistic medical images. 
The conditional GANs models have been able to help 
with important limitations such as restricting access 
to medical images for research purposes, improving 
image resolution, and reducing costs (8). This paper 
evaluates the utility of using GAN-generated data for 
medical imaging and its richness and benefits. In this 
section, the performance of conditional GAN models 
in different modalities such as MR, CT, PET, etc, and 
the methods of image-to-image translation are 
reported (figure 2). 
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Figure 1. Different 
applications of GANs 

in medical image            
analysis. 

a 

b 

c 

d 

Figure 2. Examples of cross modality image to image                   
translation. a) From left to right, MR image, CT, sCT and          

difference (CT – sCT). The images on top represent the axial 
plane, on the bottom, the frontal plane (11). b) The                        
intermediate results of the real, synthesized, and                       

reconstructed images (12). c) Sample results of the predicted 
PET using paper’s method compared to the real PET with the 
corresponding CT images (13). d) Generated MR images from 

amyloid PET images (14). 
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Cross-modality synthesis, such as generating CT-
equivalent images based on MR images, offers several 
advantages, including cost and time savings. 
However, the process of mapping between multiple 
domains is complex. A key challenge is the difficulty 
in obtaining paired images, as corresponding images 
may not always be available (9). Image-to-image 
translation methods are broadly classified into 
supervised and unsupervised approaches. Pix2Pix 
belongs to the supervised category, utilizing paired 
images to learn a one-to-one mapping. It operates 
with two datasets: one serving as input and the other 

as the corresponding output. In contrast, 
unsupervised image-to-image translation does not 
rely on paired images to learn mappings between 
domains, making it a more commonly employed 
approach. CycleGAN and UNIT are two unsupervised 
methods used in more broad applications. 
Consequently, using these methods, a synthetic image 
of the target modality can be obtained by using the 
existing modality image and preserving all the 
anatomical structures or features (10). Table 1 
summarizes the articles related to the cross-modality 
synthesis of medical images. 

Table 1. Cross-Modality synthesis. 
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Modality Method Dataset Remarks Year References 

MR → CT 

cGAN 
Gold Atlas project 

(https://zenodo.org/record/583096) 
Pelvic 2020 

Kevin N D Brou 
Boni et al. (11) 

CycleGAN 
SpineWeb Library 

(http://spineweb.digitalimaginggroup.ca) 
Lumbar Spine 2020 

Oulbacha et al. 
(49) 

ACGAN 
MR-CT image data of 10 volunteers enrolled in an IRB-

approved study at University Hospitals Cleveland Medical 
Center. 

Abdomen 2020 Qian et al. (50) 

Augmentation 
of CycleGAN 

Gold Atlas project (https://aapm.onlinelibrary.wiley.com/
doi/10.1002/mp.12748), Institut Jules Bordet (IJB), Centre 

Oscar Lambret (COL) 

Pelvic with prostate 
or rectal cancer 

2021 
Brou Boni et al. 

(51) 

cGAN 

Real MRI/CT pairs head and neck imaging volumes coming 
from 36 patients (department of radiation oncology at the 

Center Hospitalier de l’Université de Montréal), sagital 
slices of 20 different patients 

Head and Neck 2021 Touati et al. (52) 

CycleGAN 
Weakly paired data from 90 cancer patients including CT 

and MR images of the pelvis, thorax, and abdomen 
  

Pelvis, Thorax and 
Abdomen 

2021 Kang et al. (53) 

Multi-Cycle 
GAN 

CT and MR images of head, neck and shoulder submitted to 
Research Data Deposit (RDD) platform (www. 

researchdata.org.cn), with approval RDD number as 
RDDA2021001910. 

Head, Neck and 
Shoulder 

2021 Liu et al. (53) 

RTCGAN 
MR and CT volumes of 19 subjects (https://

aapm.onlinelibrary.wiley.com/doi/10.1002/mp.12748) 
Pelvic 2023 Zhao et al. (16) 

CT → MR 

MR-GAN 
Brain CT and MR images of 202 patients approved by the 

Institutional Review Board (IRB) of the Pusan National  
University Hospital, South Korea (IRB No. 1808-008-069) 

Brain 2019 Jin et al. (52) 

cGAN 
94 paired CT and MR scans as part of the ISLES 2018      

Ischemic Stroke Lesion Segmentation Challenge 
Brain 2019 Rubin et al. (17) 

ACGAN 
9 healthy subjects for this IRB approved study including 
three types of MR images (i.e., fat, water and R2) and a 

corresponding CT scan 
Brain 2020 Yang et al. (18) 

GAN - Brain 2022 Hu et al. (19) 

MR ↔ CT 

CycleGAN - 

Muscles around 
thigh, hip, pelvis, 

sacrum and femur 
bones 

2018 Hiasa et al. (9) 

CycleGAN Two-stage training and synthesis for abdominal image Abdominal, Brain 2019 Huo et al. (12) 

uagGAN 

Paired dataset: 367 MR-CT brain images from 18 patients
(https://aapm.onlinelibrary.wiley.com/doi/10.1002/

mp.12155) 
Unpaired dataset: MR-CT brain images from the Radiology 

Department of the Jordan University Hospital (JUH) 

Brain 2021 
Abu-Srhan et al. 

(20) 

CT → PET 

FCN+cGAN 25 pairs of PET/CT images Liver 2017 
Ben-Cohen et 

al. (21) 

FCN+cGAN 60 PET/CT scans from Sheba Medical center Liver 2019 
Ben-Cohen  et 

al. (13) 
TransGAN IXI dataset Brain 2022 Li et al. (22) 

PET → CT 

cGAN, 
MedGAN 

PET/CT images of 50 patients (SOMATOM mCT, Siemens 
Healthineers, Germany) 

Brain 2018 
Armanious et 

al. (23) 
cGAN 50 PET-CT studies from 50 lung cancer patients Whole-body 2019 Dong et al. (24) 

WGAN fortyfive sets of patient samples (26 males and 19 females) Whole-body 2020 Hu et al. (25) 
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MR → CT 
Kevin et al. (2020) proposed a novel multi-scale 

approach using conditional GAN (cGAN) with paired 
data to generate synthetic CT images from MRIs 
across multiple sites, focusing on cases of rectal or 
prostate cancer with CT and pelvic MR images from 
the Gold Atlas project dataset. Despite the limited 
dataset, the study achieved high efficiency through a 
combination of feature matching loss and LSGAN loss 
(11). 

In 2021, Liu et al. introduced a Multi-Cycle GAN 
technique for synthesizing head and neck region CT 
images from MRI scans, employing a Pseudo-Cycle 
Consistent module to enhance target generator 
performance and a domain control module to 
improve stability and image quality. Utilizing Z-Net to 
replace the generator yielded enhanced performance 
and synthesis accuracy, with exceptional results in 
synthetic accuracy and image quality, requiring no 
additional computational resources or time (15). 

Zhao et al. (2023) presented the Residual 
Transformer Conditional GAN (RTCGAN), a new 

methodology that combines Convolutional Neural 
Networks (CNN) to refine local texture details and 
Transformer for enhancing global correlations in 
extracting multi-level features from MR and CT 
images. Additionally, this study employs feature 
reconstruction loss to regulate potential image 
features, mitigate over-smoothing, and minimize local 
distortion in the generated CT images. Experimental 
findings indicate that RTCGAN yields visually more 
aligned results with reference CT images and delivers 
promising results in mitigating local mismatches in 
tissues (16). 

 
CT → MR 

Rubin et al. (2019) used the conditional mapping 
method by training GANs that are able to map 
computed tomography perfusion (CTP) infarcted 
zones to clearly delineate hyperintense areas in 
produced MR images. The dataset used in this study 
consisted of 94 paired MR and CT scans. Results 
showed that the infarcted core regions can be 
accurately mapped to the hyperintensities aligned 
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Modality Method Dataset Remarks Year References 

MR → PET 
BMGAN ADNI (http://adni.loni.usc.edu/) Brain 2020 Hu et al. (26) 

GLA-GAN ADNI-1 and ADNI-2 (http://adni.loni.usc.edu/) Brain 2021 Sikka et al. (27) 
BPGAN ADNI (http://adni.loni.usc.edu/) Brain 2022 Zhang et al. (28) 

PET → MR 
pix2pix ADNI (http://adni.loni.usc.edu/) Brain 2017 Choi et al. (14) 

E-GAN ADNI (http://adni.loni.usc.edu/) Brain 2022 
Bazangani et al. 

(29) 

T1 ↔ T2 
MR 

cycleGAN the MIDAS dataset, the IXI dataset, the BRATS dataset Brain 2019 Dar et al. (40) 
rsGAN the MIDAS dataset, the IXI dataset, the BRATS dataset Brain 2020 Dar et al. (39) 

da-GAN Kulaga-Yoskovitz Brain 2020 
Baoqiang Ma et 

al. (55) 
mustGAN IXI Dataset, ISLES Dataset Brain 2021 Yurt et al. (41) 

GAN 2,024 images scanned Brain 2021 
Kawahara & 
Nagata (56) 

cGAN - Brain 2022 Pan et al. (57) 

T1 → 
FLAIR MR 

Ea-GANs The BRATS2015 and the non-skull stripped IXI Brain 2019 Yu et al. (58) 
mustGAN IXI Dataset , ISLES Dataset Brain 2019 Yurt et al. (59) 

pix2pix 
  

3220 MRI scans in 1450 patients with brain tumors Brain 2021 Cont et al. (43) 

T1, T2 → 
MRA 

pix2pix 
  

IXI dataset Brain 2018 Olut et al. (44) 

DC GAN & 
WGAN-GP 

& WGAN-GP-SN 
- Brain 2020 Kossen et al. (45) 

3T → 7T 
MR 

Cascade GAN - Brain 2018 Nie et al. (46) 
cycle GAN (semi-

supervised) 
15 pairs of 3T and 7T T1 weighted MR brain images Brain 2019 Qu et al. (47) 

SynGAN 33 healthy volunteers and 89 patients Brain 2023 Duan et al. (48) 

CBCT→CT 

CycleGAN CBCT images of 45 patients 
Head and neck, thorax, 

pelvis 
2020 Eckl et al. (32) 

CycleGAN CBCT images of 30 patients Pancreas 2020 Liu et al. (33) 
CycleGAN 12000 slice pairs of CT and CBCT Pelvic head-and-neck 2020 Zhang et al. (34) 

Cycle-Deblur 
GAN & CycleGAN 

9856 CBCT images Chest 2021 Tien et al. (35) 

CycleGAN 120 paired CBCT images Head and neck cancer 2022 Zhang et al. (60) 

Domain 
adaption 

DASGAN - Digital Pathology 2019 Kapil et al. (36) 
CycleGAN HAM , MoleMap Skin 2020 Gu et al. (37) 

WGAN REFUGE , Drishti-GS1 
Eye (Retinal Fundus  

imaging) 
2020 

Kadambi et al. 
(38) 

Table 1. continued. Cross-Modality synthesis. 
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with the ground-truth MR ‘s corresponding areas by 
using the CGAN model. And also segmentation 
performance quantitatively improved in this method 
(17). 

Yang et al. (2020) introduced CAE-ACGAN, a novel 
GAN-based method merging Auxiliary Classifier 
Generative Adversarial Network (ACGAN) and 
Variational Auto-Encoder (VAE) strengths. Applied to 
CT to MR image translation using brain datasets from 
nine healthy subjects, approved by the Institutional 
Review Board (IRB), the approach surpassed WGAN-
GP and pix2pix, achieving superior accuracy while 
preserving clear anatomical topography and internal 
organ structures' gross features (18). 

In another study, Hu et al. (2022) utilized a GAN 
model to produce synthetic MR brain images from the 
corresponding CTs in patients with suspected acute 
ischemic stroke and investigated the possibility of 
detecting suspected lesions using synthetic MRI 
images. The introduced model achieved high 
performance in translating non-contrast CT images to 
synthetic MR and demonstrated considerable 
accuracy in detecting patients with suspected acute 
ischemic stroke (19). 
 

MR ↔ CT 
Hiasa et al. (2018) expanded the CycleGAN 

method by incorporating gradient consistency (GC) 
loss to improve images edge alignment in two 
domains (613 CT and 302 MR volumes) to overcome 
wide ranges of data and accuracy enhancement. The 
results showed that a lot of the training data resulted 
in statistically remarkable enhancements based on 
paired t-tests in Mutual information. The gradient 
consistency loss also led to a raise in mutual 
information between the MR and the synthetic CTs (9). 

In 2019, Huo et al. introduced SynSeg-Net, an end-
to-end synthetic segmentation network capable of 
training on target imaging modalities without manual 
labelling. SynSeg-Net utilizes unpaired intensity 
images from both target and source domains, with 
manual labels solely in the source domain. 
Integration of CycleGAN and Deep Convolutional 
Neural Networks (DCNN) facilitated SynSeg-Net's 
development. Evaluation, based on Dice similarity 
coefficient (DSC), compared segmentation outcomes 
against ground truth across different methods. 
Performance assessment involved two experiments: 
(1) MRI to CT abdominal images and (2) CT to MRI 
brain images, with SynSeg-Net achieving notably high 
performance relative to other methods, particularly 
when utilizing target modality labels (12). 

In 2021, Abu-Srhan et al. introduced the 
Unsupervised Attention Guided Generative 
Adversarial Network (uagGAN) approach, designed 
to translate CT images to MR images and vice versa 
using small-sized datasets, both paired and unpaired. 
This model addresses the misalignment issue 
inherent in unpaired training and mitigates the 

challenge of generating blurred images during paired 
data training. The outcomes demonstrate the model’s 
high efficiency in MR-to-CT image translation. 
However, further improvements are needed for CT-to
-MR image translation (20). 

 

CT → PET 
In oncology, diagnosis and classification are 

regularly made based on PET images. Moreover, PET 
and CT imaging have become key assessment 
apparatus for drug development. Furthermore, in 
recent years, many medical imaging analysts have 
been trying to produce artificial PET data in a direct 
way from CT images, because PET devices are costly 
and include radioactivity, and in this way put patients 
in danger (13). 

In 2017, Ben-Cohen et al. utilized fully 
convolutional networks (FCN) in conjunction with 
conditional generative adversarial networks (cGAN) 
to anticipate PET-like images from CT images. The 
cGAN model was constructed following the 
framework introduced by Isola et al. This approach 
successfully achieved high tumor detection rates 
through the use of synthetic PET images generated 
from the cGAN combined with FCN (21).  

In another study, Ben-Cohen et al. (2019) 
employed 60 PET/CT scans from the Sheba Medical 
Center dataset to generate synthetic PET images of 
the liver using the FCN-cGAN model. By integrating 
this model with an existing lesion detection software, 
positive outcomes were observed in terms of both 
restoration measures and detection measures (13).  

Another study introduced a transformer-
enhanced GAN for generating synthetic CT images 
from PET scans and introduced a loss function based 
on image gradient differences to enhance the quality 
of the generated CT images (22). 

 

PET → CT 
The study published in 2018, introduced a new 

GAN-based method, called MedGAN. Armanious et al. 
used different models for the translation of medical 
images, which are based on an end-to-end approach. 
The results showed that the MedGAN framework has 
the most adequate performance in translating PET 
images into artificial CT images. Also, it was 
determined that the classic adversarial loss CGAN is 
ineffective (23).  

Dong et al. (2019) used CycleGAN model to 
generate synthesize CT images from whole-body NAC 
PET. The synthesized CT images show high similarity 
to real CT images and strong contrast on lungs, soft 
tissues, and bone. In the absence of structural details, 
this model shows tremendous potential for whole-
body PET attenuation correction (24).  

PET imaging necessitates CT imaging for precise 
anatomical delineation and attenuation correction 
(AC) maps, crucial for accurate PET quantification, 
albeit escalating ionizing radiation exposure. In 2020, 

801 Hosseinpour et al. / Networks in medical image to image translation 

 [
 D

O
I:

 1
0.

61
88

2/
ijr

r.
23

.3
.3

7 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 m

ai
l.i

jr
r.

co
m

 o
n 

20
25

-1
0-

30
 ]

 

                             5 / 12

http://dx.doi.org/10.61882/ijrr.23.3.37
https://mail.ijrr.com/article-1-6681-en.html


Hu et al. introduced a WGAN model to mitigate 
radiation dosage while acquiring high-resolution PET 
and CT data concurrently. The model first addresses 
noise and artifacts in non-attenuation-corrected 
(NAC) PET data to produce synthetic AC PET images 
for whole-body PET/CT scans. It subsequently 
synthesizes CT images from the synthetic AC PET 
images obtained in the initial stage (25).  

 

MR → PET 

Hu et al. (2020) proposed Bidirectional Mapping 
GAN (BMGAN), an end-to-end 3D network, that latent 
vector and image contexts were efficiently applied 
and optimized to predict PET brain images from MR 
images. The model is evaluated on a subset of the 
ADNI database. Both quantitative and qualitative 
results prove the advantages of utilizing 3D 
convolutional operations instead of the common 2D 
operations. The experimental results demonstrated 
the effectiveness of the method in generating high-
quality synthetic images, underscoring the 
significance of adversarial training in 3D BMGAN. The 
advantages of the proposed BMGAN are clearly 
shown in this scenario. The proposed network has 
shown acceptable performance for MR to PET 
translation task (26). 

In another study, Sikka et al. (2021) introduced a 
globally and locally aware GAN model for MRI to PET 
cross-modality image translation in order to facilitate 
diagnosis of. Experimental results show the 
advantage of GLA-GAN both in generating synthetic 
PET images with enhanced quality and utility in 
clinical studies for improving Alzheimer’s disease 
diagnosis compared to other novel models (27). 

In 2022, Zhang et al. noted that multi-modal 
medical images, such as MRI and PET scans, are 
commonly used for diagnosing brain disorders like 
Alzheimer's disease. A novel method called BPGAN is 
proposed for synthesizing PET scans from MRI 
images, improving the accuracy of AD diagnosis. The 
experimental findings reveal that the synthetic PET 
images generated by BPGAN exhibit high quality and 
offer complementary information for Alzheimer's 
disease (AD) diagnosis. The proposed method 
surpasses other state-of-the-art techniques by 
generating diverse and high-quality PET scans (28). 

 

PET → MR 

Choi et al. (2018) developed a model to translate 
amyloid PET images into structural MR images, 
trained on paired data comprising MR images and 
amyloid PET scans from Alzheimer's disease (AD) 
and mild cognitive impairment (MCI) patients, as 
well as normal controls. Utilizing a model 
architecture featuring two convolutional neural 
networks, a discriminator, and a generator, data from 
the ADNI database were gathered. Results indicated 
that normal PET template-based and PET 
segmentation-based models exhibited greater bias in 

AD patients, whereas the multi-atlas-based model 
demonstrated less bias than the former. Furthermore, 
both normal PET template-based and PET 
segmentation-based models showed significant 
underestimation compared to MR-based models, 
regardless of the subject's diagnosis or cortical 
regions of interest (14). 

Bazangani et al. (2022) introduced a cross-
modality generation technique termed Elicit 
Generative Adversarial Network (E-GAN) to tackle 
challenges related to insufficient databases and 
unbalanced data in medical image applications. Key 
innovations include the implementation of separable 
convolution for learning 3D features, a fusion strategy 
resembling a self-attention mechanism, integration of 
a Sobel filter for conveying geometrical information, 
and the adoption of a weighted version of a hybrid 
loss function to enhance learning stability. Evaluation 
results demonstrate superior performance in 
capturing both structural and textural information 
compared to existing methods. However, limitations 
such as prolonged training times due to feature 
mixing operations and the utilization of a min-max 
strategy were noted (29). 

 

CBCT→CT 
Cone-Beam Computed Tomography (CBCT) 

images are used to measure the dose of adaptive 
radiation therapy. Physicians' challenges in this area 
are inaccurate Hounsfield units (HU) and large 
artifacts (30). The ideal solution to these challenges is 
to produce CT images from CBCT images. Using 
deformed planning CT images leads to artifacts' 
significant decrease and HU values corrected while 
maintaining anatomical accuracy. Currently, the GAN 
models have illustrated considerable success in image
-to-image translation tasks (31). 

Eckl et al. (2020) utilized a cycleGAN-based 
method for CBCT to synthetic CT conversion, 
assessing image quality, dosimetric accuracy, and 
segmentation on a dataset of 15 patients. Despite 
closely resembling pCT images and exhibiting 
accurate dosimetry, the model faced challenges 
regarding low soft-tissue contrast (32).   

Similarly, Liu et al. (2020) employed CycleGAN to 
generate CBCT-based sCT images, employing a patch-
based approach for image generation and achieving 
comparable accuracy to planning CT for dose 
calculation (33). 

Zhang et al. (2020) explored AI-driven 
enhancement of CBCT image quality using an 
unsupervised deep-learning method, demonstrating 
effectiveness through metrics like MAE of Hounsfield 
units and PSNR, offering efficiency gains in terms of 
time and cost (34).  

In 2022, Tian et al. applied conditional GANs to 
synthesize CT images from CBCT scans of head and 
neck cancer patients, conducting a comparative 
evaluation with U-Net and CycleGAN to assess 
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synthetic CT image quality (35). 
 

Domain adaption 

Kapil et al. (2019) introduced an end-to-end 
training framework called DASGAN (Domain 
Adaptation and Segmentation GAN), which 
simultaneously conducts semantic segmentation and 
unpaired image-to-image translation. The training 
dataset comprised 56 stained whole slide images 
(WSI) of non-small cell lung cancer (NSCLC) subjects 
and 69 whole slide images of the same indication 
stained with the SP263 PD-L1 clone. These images 
were unpaired and originated from two independent 
patient cohorts. DASGAN facilitated the optimization 
of domain transfer networks, aiming to generate 
realistic PD-L1 images while enhancing the 
performance of the segmentation network (36). 

Gu et al. (2020) proposed employing a CycleGAN 
as a domain adaptation technique and novel cross-
domain recognition method for skin disease imaging 
translation between datasets. The study utilized HAM 
and MoleMap datasets to validate the approach, 
revealing improved model performance with 
CycleGAN domain adaptation. However, despite 
minimizing distribution shift, residual variances 
persisted due to factors such as labelling noise, which 
remained unrecoverable (37).  

Kadambi et al., 2020 presented a segmentation 
approach based on domain adaptation utilizing 
Wasserstein distance inspired by WGAN adversarial 
domain adaptation for classification tasks. Utilizing 
REFUGE and Drishti-GS1 datasets, the method 
demonstrated higher Dice and IOU for cup and disc 
segmentation compared to neural network's domain-
adversarial training and adversarial discriminative 
domain adaptation, with more pronounced 
improvements over direct transfer learning. 
Efficiency was notably enhanced compared to other 
patch-based discriminator methods (38). 

 

T1 ↔ T2 MR 
In medical imaging, physicians use T1-weighted 

images to examine organs such as white and gray 
matter of the brain. T2-weighted images provide 
physicians with more complete and accurate 
information about fluid and cortical tissues. However, 
multi-contrast imaging is often impractical due to 
limited scan time or excessive artifacts related to 
patient movement. Therefore, the use of artificial 
intelligence models can be efficient (39). 

A study working on the image contrast is one 
conducted by Dar et al., (2019). They introduced a 
method performing end-to-end training, working on 
multi-contrast MRI synthesis utilizing cGANs. This 
method employed images of the source contrast to 
create target contrast. Their proposed method 
demonstrated a promising performance regarding 
multi-contrast MRI synthesis in clinical practice (40). 

Dar et al., (2020), introduced a novel method for 

under sampled multi-contrast acquisitions using 
reconstructing-synthesizing GAN (rsGAN). Their 
method represented a high-level performance 
compared to pure reconstruction and synthesis 
methods, boosting the quality and scan efficiency of 
multi-contrast MRI exams (39). 

In their study in 2021, Yurt et al. also worked on 
T2-weighted image synthesis from T1-weighted 
images. To do this, they employed a multi-stream 
GAN architecture (mustGAN). In this method, the 
information from multiple source contrasts is 
accumulated through a combination of multiple one-
to-one streams and a joint many-to-one stream. The 
advantage of this method is that it presents a higher 
performance in terms of quantity and quality (41). 

 

T1 → FLAIR MR 
In 2019, Yu et al. introduced Edge-Aware 

Generative Adversarial Networks (Ea-GANs), which 
serve the purpose of translating T1-weighted images 
into FLAIR-MR images. These networks incorporate 
edge information, which reflects the textural 
structure of image content and delineates the borders 
of various objects, thereby reducing gaps. The model 
consists of a generator-induced Ea-GAN (gEa-GAN) 
and a discriminator-induced Ea-GAN (dEa-GAN). Both 
frameworks utilize their generators to integrate the 
edge information, with dEa-GAN additionally 
employing its discriminator (42). 

Also, Yurt et al. (2019) used a different method of 
GAN for generating FLAIR image synthesis from T1- 
and T2-weighted images. The mustGAN can enhance 
the synthesis accuracy in numerous regions that are 
suboptimally recovered by competing methods by 
capturing information from both one-to-one and 
many-to-one streams. As a whole, mustGAN decrease 
noise and artifacts of fake images of white-matter of 
brain tissues, and provide more accurate 
representations of gray-matter tissue boundaries (41).  

Cont et al. (2021) devised a GAN to generate 
missing FLAIR images from T1-weighted images, 
intended for utilization in a brain tumor 
segmentation model that necessitated multiple MRI 
series (43). 

 

T1, T2 → MRA 

In 2018, Olut et al. showcased an sGAN approach 
for generating magnetic resonance angiography 
(MRA) contrast from multi-contrast T1- and T2-
weighted MRI data, relying on spin-lattice and spin-
spin relaxation effects. Their study revealed that the 
sGAN outperformed the standard GAN method in 
terms of comparable PSNR values and enhanced 
visual perceptual quality (44). 

In 2020, Kossen et al. conducted a study focusing 
on MRA among various modalities. Their research 
centered on training three GAN frameworks using a 
dataset of subjects with cerebrovascular disease. The 
study design involved training DCGAN, Wasserstein-
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GAN with gradient penalty (WGAN-GP), and WGAN-
GP with spectral normalization (WGAN-GP-SN) on 
time-of-flight (TOF) MRA patches to generate image-
label pairs. Performance evaluation occurred in two 
stages: first, through visual inspection and 
quantitative comparison to real data, and second, by 
employing the "half U-net" and classical 
augmentation techniques. The results evolution 
indicated the superior performance of WGAN-GP-SN 
(45). 

 

3T → 7T MR 
For generating artificial medical images, Nie et al. 

in 2018 presented the supervised GAN. Their 
presented model comprised a generator network 
which is a fully convolutional network and 
discriminator network which is a CNN. Fully 
convolutional network was planned to include an 
image-gradient-difference that led to creating more 
real-like target images. In addition, a context-aware 
convolutional adversarial network was performed 
utilizing the Auto-Context Model. The designed 
model was just employed for 3T-to-7T synthesis task. 
The accuracy obtained by this model was acceptable 
(46).   

In 2019, Qu et al. designed a new approach based 
on information in both spatial and wavelet domains 
using Semi Wave framework for 7T MR image 
synthesis. This framework is a semi-supervised 
cycleGAN. The first mapping function of cycleGAN is a 
basic 3T-to-7T mapping and another is a twofold 3T-
to-7T mapping. This model consists of a wavelet 
coefficient extractor and two associated adversarial 
discriminators. Thorough qualitative and 
quantitative tests demonstrated better 7T MR images 
in terms of anatomical details compare with fully-
supervised methods (47).  

In 2023, Duan et al. demonstrated the feasibility 
of generating synthetic 7T images with similar 
quality to acquired 7T images using a synGAN model 
(48). 

 
 

DISCUSSION  
 

The reviewed literature highlights the 
transformative potential of Generative Adversarial 
Networks (GANs) in cross-modality medical imaging. 
For MRI-to-CT translation, models such as CycleGAN 
and Residual Transformer Conditional GAN 
(RTCGAN) have shown the ability to produce high-
quality synthetic CT images that align closely with 
reference CTs, aiding applications like radiotherapy 
planning and reducing patient radiation exposure. 
Similarly, CT-to-MRI translation using models like 
ACGAN enhances soft tissue visualization and 
improves diagnostic precision for conditions like 
stroke and oncology (16, 18). PET-to-CT and CT-to-PET 
conversions demonstrate the value of GANs in 
creating synthetic images for attenuation correction 

and tumour detection, effectively lowering costs and 
minimizing reliance on radiation-heavy imaging 
protocols (21, 24). MRI-to-PET translation, facilitated by 
models like BMGAN, has shown promise in generating 
functional PET-like images, enabling non-invasive 
diagnostics for neurodegenerative diseases such as 
Alzheimer’s (26). 

Despite these advancements, challenges persist, 
including difficulties in acquiring paired datasets, 
computational complexity, and the potential for 
anatomical inaccuracies in synthesized images. 
Clinician trust in synthetic images remains a 
significant hurdle due to the risk of artifacts and the 
opaque mechanisms of GAN models (59). However, the 
advantages, such as reducing imaging costs, 
enhancing diagnostic workflows, and improving 
accessibility to advanced imaging techniques, make 
GAN-based image synthesis a promising solution for 
overcoming current limitations in medical imaging (8). 

 

Challenges 
Converting medical images from one modality to 

another using Generative Adversarial Networks 
(GANs) presents several challenges. The scarcity of 
paired data due to variations in patient positioning 
and scan timing makes it difficult to train accurate 
models, with unpaired translation leading to less 
reliable results. Anatomical accuracy is often 
compromised during conversion, especially in 
complex tissues, as synthesized images may lack fine 
details critical for diagnosis. Computational 
complexity and the high resource demands of GANs 
limit their clinical application, while overfitting can 
occur when datasets are small or unrepresentative (9, 

20). Additionally, the lack of interpretability and trust 
in GAN-generated images, due to their "black-box" 
nature and potential for artifacts, remains a 
significant hurdle for clinical adoption. Finally, the 
absence of standardized evaluation metrics 
complicates the assessment of GAN performance in 
clinical contexts. Despite these challenges, ongoing 
improvements in GAN models continue to enhance 
their feasibility for medical image conversion (59). 

 

Advantages 
In medical image processing, a GAN model can 

produce high-resolution images from low-resolution 
medical images and image colouring with more than 
90% accuracy. Also, annotating medical images is 
very expensive, and medical datasets often suffer 
from class imbalances. The aforementioned problems 
challenge the use of supervised deep learning 
methods. Moreover, transferring learning methods, 
like most other areas of machine learning, lack 
medical imagery. On the one hand, producing real 
images is costly, and on the other hand, traditional 
data augmentation techniques can only produce data 
that is closely distributed with the original samples. 
But, the use of GAN models offers a solution to the 
lack of data in medical image analysis. One of the 
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main applications of GANs is their use in cross-
modality image synthesis. Sometimes two or more 
medical images are needed for a complete diagnosis; 
however, the physician’s access is limited due to 
some problems. The contrast of more images can 
provide necessary and additional information to the 
physician. For example, in contrast to T1-weighted 
images, T2-weighted images can better distinguish 
inflammation from normal tissues and present more 
complete information for diagnosis (41). 

In addition, to obtain reliable results from 
automated image analysis, it is essential to optimize 
image quality before extracting diagnostic 
information. In some circumstances, it may be 
possible to generate additional image information 
based on information that has already been collected 
without further examination. Hence, the development 
of an image translation framework would be useful 
for medical professionals and patients; this enhanced 
diagnostic efficiency shortens the diagnostic 
procedure by minimizing the need for additional 
scans. However, it should be noted that translating an 
image from one modality to another can be 
challenging, with the risk of introducing untrue 
information and rendering fake images unreliable for 
diagnostic use. Translated images, in some cases, are 
used to enhance the quality of further post-
processing tasks rather than to aid in diagnosing. 
Translation of PET images to synthetic CT images is 
an example where synthesized CT images are not 
used directly for analysis and diagnostic purposes, 
but rather for PET attenuation correction (AC) (23). 

 

Disadvantages 
The use of GAN models sometimes has its 

drawbacks and limitations, some of which are 
mentioned here. When a model is applied in a 
medical environment, it will not be accurate if it does 
not take into consideration characteristics that 
clinicians consider for prognosis and diagnosis. One 
of these disadvantages is poor interpretability due to 
the use of deep neural networks to produce synthetic 
images in GAN models. Although GANs perform 
better than deep neural networks models in many 
contexts, they are difficult to interpret; this is the 
main problem that prevents practical application 
within the medical profession. Also, if the database 
does not have enough data, the accuracy of the model 
decreases. Designing Gan models, the data flow, and 
lost functions to minimize the possibility of collapse 
or non-convergence of the model must be designed 
carefully (61). 

One of the main challenges is to rely on the data 
generated by these models and gain the trust of 
physicians and radiologists. Especially, the 
mechanism of GAN models is not sufficiently 
understood. Typically, intensities in medical images 
have some meaning. For instance, in CT images, every 
intensity can be mapped to the Hounsfield-scale, so 

each intensity identifies a specific tissue. These 
associations are missing from the current GAN 
models leading to distrust of the healthcare system. 
However, the outcome in the computer version is 
more satisfactory (30). 

 

Future clinical applications of GANs  
As we envision future possibilities, GANs can be 

used to improve radiology workflow and patient care, 
as shown in this paper. The generation of artificial 
medical images and image-to-image translation by 
GANs could have other useful and practical 
developments. Among the applications of cGANs that 
should be considered in the future in the field of 
medical image processing is the addition of makeup 
removal presented by Chang et al. (62). This technique 
can be used to reduce image artifacts; for example, 
improving bone X-ray images by removing artifacts. 
It may help radiologists and physicians assess the 
details and diagnose fractures and determine bone 
healing progress. Another example of the 
development of image-to-image translation can be 
attributed to the improved restoration of MR. 
Children may be less likely to retake their exams if 
MRI images acquired with motion artifacts can be 
restored; it also reduces the workload of radiologists 
(39). 

One of the new applications of GANs that was 
introduced by Bodnar in 2018 is Generating images 
from natural language. The images produced by this 
method can create a new approach in the processing 
of medical images. For example, using this generated 
dataset, medical image classification tasks can be 
trained on supervised neural networks (63). 

In summary, despite the remarkable results, GANs 
still cannot be used as a reliable source for medical 
diagnosis. There are many challenges in this regard. 
However, despite all this, it cannot be ignored that 
GANs are part of the medical future. 

 

Concluding remarks 
In conclusion, GANs hold significant potential to 

transform medical imaging by enabling efficient 
image-to-image translation across modalities, 
reducing costs, and improving diagnostic workflows. 
Their ability to generate high-quality synthetic 
images can enhance clinical decision-making, reduce 
patient exposure to radiation, and improve 
accessibility to advanced imaging techniques. 
However, further validation, optimization, and trust-
building are essential for their widespread clinical 
adoption. Overcoming challenges such as data 
limitations, computational demands, and the need for 
interpretable models will be crucial for integrating 
GAN-based solutions into routine medical practice. 
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