Department of Physical Engineering, DCI, University of Guanajuato, 37150 Leon, Gto., Mexico , modesto@fisica.ugto.mx
Abstract: (931 Views)
Background:The radiation dose received by the eye lens when a chest computed tomography (CT) scan is performed, is generally not recorded in clinical practice, particularly due to the distance of this organ from the X-ray beam. Material and Methods: The absorbed dose in the eye lens was determined by Monte Carlo N-Particle version 5 (MCNP5) calculations and thermoluminescence dosimetry (TLD). Two models of the CT scanner and patient were constructed using the MCNP5 code. The first model was the Bottle Manikin Absorber (BOMAB), which includes the main structures of the eye, and the second was the computational voxelized phantom MAX06. In addition, measurements were carried out in 21 adult patients, which underwent a chest CT study in a Siemens SOMATOM Perspective scanner. Results: Average Monte Carlo values for the absorbed dose of 16.4 ± 0.4 mGy and 1.97 ± 0.04 mSv for the effective dose were obtained when the BOMAB model was used. Mean values of 13.3 ± 0.3 mGy and 1.59 ± 0.04 mSv, respectively, were obtained for the absorbed dose and effective dose for the MAX06 phantom. TLD measurements gave average values of 12.66 ± 1.33 mGy and 1.52 ± 0.16 mSv for absorbed dose and effective dose, respectively, in simple chest scans, and 7.60 ± 0.63 mGy and 0.91 ± 0.07 mSv, respectively, for simple contrast-enhanced studies. Conclusions: The results of the Monte Carlo simulations with BOMAB and voxelized phantoms in our study agree relatively well with each other.
1. 1. Chida K (2022) What are useful methods to reduce occupational radiation exposure among radiological medical workers, especially for interventional radiology personnel. Radiol Phys Technol, 15(2): 101-115. [DOI:10.1007/s12194-022-00660-8] [PMID]
2. Xu XS, Zhang LA, Sun QF, Qin YC, Yu NL (2018) Estimation of the occupational exposure dose for medical diagnostic X-ray workers in Jiangsu, China, using a retrospective dosimetry method. J Radiat Res, 59(2): 141-148. [DOI:10.1093/jrr/rrx073] [PMID] []
3. Taqi AH, Faraj KA, Zaynal SA, Hameed AM, Mahmood AAA (2018) Effects of occupational exposure of x-ray on hematological parameters of diagnostic technicians. Radiat Phys Chem, 147: 45-52. [DOI:10.1016/j.radphyschem.2018.01.027]
4. Rehani MM and Berry M (2000) Radiation doses in computed tomography: the increasing doses of radiation need to be controlled. BMJ, 320(7235): 593-594. [DOI:10.1136/bmj.320.7235.593] [PMID] []
5. Zira JD, Zikirullahi US, Garba I, Sidi M, Umar M, Bature SS (2020) Assessment of radiation leakage from diagnostic rooms of radiology Department of a Teaching Hospital in Kano, Northwestern Nigeria. J Nuc Technol Appl Sci, 8(1): 135-143. [DOI:10.21608/jntas.2020.23942.1018]
6. Sato K, Sato C, Takahashi A, Takano H, Kayano S, Ishiguro A, Takane Y, Kaneta T (2022) Accuracy of virtual monochromatic images generated by the decomposition of photoelectric absorption and Compton scatter in dual-energy computed tomography. Phys Eng Sci Med, 45(1): 239-249. [DOI:10.1007/s13246-022-01107-5] [PMID]
7. Angel E, Yaghmai N, Jude CM, DeMarco JJ, Cagnon CH, Goldin JG, McCollough H, Primak AN, Cody DD, Stevens DM, McNitt-Gray MF (2009) Dose to radiosensitive organs during routine chest CT: effects of tube current modulation. Am J Roentg, 193(5): 1340-1345. [DOI:10.2214/AJR.09.2886] [PMID] []
8. Lee C, Kim KP, Long D, Fisher R, Tien C, Simon SL, Bouville A, Bolch WE (2011) Organ doses for reference adult male and female undergoing computed tomography estimated by Monte Carlo simulations. Med Phys, 38(3): 1196-1206. [DOI:10.1118/1.3544658] [PMID] []
9. Alonso TC, Mourão AP, Santana PC, da Silva TA (2016) Assessment of breast absorbed doses during thoracic computed tomography scan to evaluate the effectiveness of bismuth shielding. App Radiat Isot, 117: 55-57. [DOI:10.1016/j.apradiso.2016.03.018] [PMID]
10. Hardy AJ, Bostani M, McMillan K, Zankl M, McCollough C, Cagnon C, McNitt-Gray M (2018) Estimating lung, breast, and effective dose from low-dose lung cancer screening CT exams with tube current modulation across a range of patient sizes. Med Phys, 45(10): 4667-4682. [DOI:10.1002/mp.13131] [PMID] []
11. Yang Y, Zhuo W, Zhao Y, Xie T, Wang C, Liu H (2021) Estimating specific patient organ dose for chest CT examinations with Monte Carlo method. Appl Sci, 11(19): 8961. [DOI:10.3390/app11198961]
12. Tahiri M, Mkimel M, Benameur Y, El Baydaoui R, Mesradi MR, El Rhazouani O (2021) Organ dose estimation for adult chest CT examination using GATE Monte Carlo simulation. Phys Part Nuclei Lett, 18: 502-509. [DOI:10.1134/S1547477121040166]
13. Lee C, Kim KP, Bolch WE, Moroz BE, Folio L (2015) NCICT: a computational solution to estimate organ doses for pediatric and adult patients undergoing CT scans. J Radiol Protect, 35(4): 891. [DOI:10.1088/0952-4746/35/4/891] [PMID]
14. Gao Y, Mahmood U, Liu T, Quinn B, Gollub MJ, Xu XG, Dauer LT (2020) Patient specific organ and effective dose estimates in adult oncology computed tomography. Am J Roentg, 214(4): 738. [DOI:10.2214/AJR.19.21197] [PMID] []
15. Akbari-Zadeh H, Seyedi SS, Ganji Z, Sherkat H, Montazerabadi AR, Bahreyni Toosi MT (2024) Pediatric dose references levels estimation for routine computed tomography examinations in Great Khorasan province, Iran. Int J Radiat Res, 22(1): 179-184. [DOI:10.61186/ijrr.22.1.179]
16. Saba V, Shuraki JK, Valizadeh A, Zahedinia M, Barkhordari M (2020) Reducing absorbed dose to thyroid in neck CT examinations: The effects of Saba shielding. Radiat Protect Dosim, 191(3): 349-360. [DOI:10.1093/rpd/ncaa153] [PMID]
17. Ghaznavi H, Momeni Z, Ghaderi S (2021) Assessment of thyroid cancer risk after cervical computed tomography: The impact of bismuth shielding. Dis Diagnosis, 10(2): 70-74. [DOI:10.34172/ddj.2021.14]
18. Mehnati P, Malekzadeh R, Divband B, Sooteh MY (2020) Assessment of the effect of nano-composite shield on radiation risk prevention to breast during computed tomography. Iranian J Radiol, 17(1): e96002. [DOI:10.5812/iranjradiol.96002]
19. Mourão A, Aburjaile W, Santos SF (2019) Dosimetry and protocol optimization of computed tomography scans using adult chest phantoms. Int J Radiol Imaging Technol, 5(1): 1-6.
20. Yokoyama S, Hamada N, Tsujimura N (2019) Recent discussions toward regulatory implementation of the new occupational equivalent dose limit for the lens of the eye and related studies in Japan. Int J Radiat Biol, 95(8): 1103-1112. [DOI:10.1080/09553002.2019.1605464] [PMID]
21. Alkhorayef M, Sulieman A, Alonazi B, Alnaaimi M, Alduaij M, Bradley D (2019) Estimation of radiation-induced cataract and cancer risks during routine CT head procedures. Rad Phys Chem, 155: 65-68. [DOI:10.1016/j.radphyschem.2018.08.019]
22. Omer H, Alameen S, Mahmoud WE, Sulieman A, Nasir O, Abolaban F (2021) Eye lens and thyroid gland radiation exposure for patients undergoing brain computed tomography examination. Saudi J Biol Sci, 28(1): 342-346. [DOI:10.1016/j.sjbs.2020.10.010] [PMID] []
23. Lee YH, Yang SH, Lin YK, Glickman RD, Chen CY, Chan WP (2020) Eye shielding during head CT scans: dose reduction and image quality evaluation. Acad Radiol, 27(11): 1523-1530. [DOI:10.1016/j.acra.2019.12.011] [PMID]
24. Kawauchi S, Chida K, Hamada Y, Tsuruta W (2022) Lens dose reduction with a bismuth shield in neuro cone-beam computed tomography: an investigation on optimum shield device placement conditions. Radiol Phys Technol, 15: 25-36. [DOI:10.1007/s12194-021-00644-0] [PMID]
25. Vázquez-Bañuelos J, Campillo-Rivera GE, García-Durán A, Rivera ER, Arteaga MV, Raigosa AB, Vega-Carrillo HR (2019) Doses in eye lens, thyroid, and gonads, due to scattered radiation, during a CT radiodiagnosis study. App Radiat Isot, 147: 31-34. [DOI:10.1016/j.apradiso.2019.02.012] [PMID]
26. Shibata H, Kondo Y, Fukada S, Asada Y, Kozawa I (2019) Evaluation of radiation dose in coronary computed tomography-angiography examinations: Using organ dose and effective dose. Radiat Phys Chem, 158: 218-221. [DOI:10.1016/j.radphyschem.2018.12.029]
27. Brown FB and Nagaya Y (2002) The MCNP5 random number generator (No. LA-UR-02-3782). Los Alamos National Lab. (LANL), Los Alamos, NM, United States.
28. Hayati H, Mesbahi A, Nazarpoor M (2016) Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purposes. Radiol Phys Technol, 9: 37-43. [DOI:10.1007/s12194-015-0331-4] [PMID]
29. McConn RJ, Gesh CJ, Pagh RT, Rucker RA, Williams IIIR (2011) Compendium of material composition data for radiation transport modeling (No. PNNL-15870 Rev. 1). Pacific Northwest National Lab.(PNNL), Richland, WA, United States. [DOI:10.2172/1023125] []
30. Richmond CR (1985) ICRP publication 23. Int J Radiat Biol and Related Studies in Phys, Chem Med, 48(2): 285-285. [DOI:10.1080/09553008514551281]
31. Asadi S, Vaez-zadeh M, Masoudi SF, Rahmani F, Knaup C, Meigooni AS (2015) Gold nanoparticle-based brachytherapy enhancement in choroidal melanoma using a full Monte Carlo model of the human eye. J Appl Clin Med Phys, 16: 344-357. [DOI:10.1120/jacmp.v16i5.5568] [PMID] []
32. Kramer R, Khoury HJ, Vieira JW, Lima VJM (2006) MAX06 and FAX06: update of two adult human phantoms for radiation protection dosimetry. Phys Med Biol, 51(14): 3331-3346. [DOI:10.1088/0031-9155/51/14/003] [PMID]
33. Martínez-Ovalle SA, Barquero R, Gómez-Ros JM, Lallena AM (2012) Neutron dosimetry in organs of an adult human phantom using linacs with multileaf collimator in radiotherapy treatments. Med Phys, 39(5): 2854-2866. [DOI:10.1118/1.4704527] [PMID]
34. Akkurt H and Eckerman KF (2007) Development of PIMAL: mathematical phantom with moving arms and legs (No. ORNL/TM-2007/14). Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States). [DOI:10.2172/1339944]
35. McCollough CH, Boedeker K, Cody D, Duan X, Flohr T, Halliburton SS, Hsieh J, Layman RR, Pelc NJ (2020) Principles and applications of multienergy CT: Report of AAPM Task Group 291. Med Phys, 47(7): e881-e912. [DOI:10.1002/mp.14157] [PMID]
36. Durham J (2006) Concepts, quantities, and dose limits in radiation protection dosimetry. Radiat Meas, 41: S28-S35. [DOI:10.1016/j.radmeas.2007.01.011]
37. ICRP (2017) Diagnostic reference levels in medical imaging. Int Comm Radiol Prot Publ, 135: Ann. ICRP, 46. [DOI:10.1177/0146645317717209] [PMID]
38. Hashemi H, Heydarian S, Khabazkhoob M, Emamian MH, Yekta A, Fotouhi A (2021) Anterior chamber depth measurement using Pentacam and Biograph in children. Clin Exp Optom, 105(6): 582-586. [DOI:10.1080/08164622.2021.1971043] [PMID]
39. Haidekker MA (2013) X-ray projection imaging. In Medical Imaging Technology (pp. 13-35). Springer, New York, NY. [DOI:10.1007/978-1-4614-7073-1_2]
40. Poludniowski G, Landry G, Deblois F, Evans PM, Verhaegen F (2009) SpekCalc: a program to calculate photon spectra from tungsten anode x-ray tubes. Phys Med Biol, 54(19): N433. [DOI:10.1088/0031-9155/54/19/N01] [PMID]
41. Jibiri NN and Adewale AA (2014) Estimation of radiation dose to the lens of eyes of patients undergoing cranial computed tomography in a teaching Hospital in Osun state, Nigeria. Int J Radiat Res, 12(1): 53-60.
42. Ngaile JE and Msaki PK (2006) Estimation of patient organ doses from CT examinations in Tanzania. J Appl Clin Med Phys, 7(3): 80-94. [DOI:10.1120/jacmp.v7i3.2200] [PMID] []
43. Alkhorayef M, Babikir E, Alrushoud A, Al-Mohammed H, Sulieman A (2017) Patient radiation biological risk in computed tomography angiography procedure. Saudi J Biol Sci, 24(2): 235-240. [DOI:10.1016/j.sjbs.2016.01.011] [PMID] []
44. Stewart FA, et al. (2012) ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs-threshold doses for tissue reactions in a radiation protection context. Annals of the ICRP, 41(1-2): 1-322. [DOI:10.1016/j.icrp.2012.02.001] [PMID]
León M, Quispe B, Gutiérrez L, Peña J, Waldo G, Cerón P, et al . Eye lens dose estimations in chest computed tomography examinations using Monte Carlo simulations in a Siemens SOMATOM perspective scanner. Int J Radiat Res 2024; 22 (4) :853-860 URL: http://ijrr.com/article-1-5725-en.html