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ABSTRACT

Background: Preoperative classification of gliomas is essential to identify the optimal
treatment and prognosis. The aim of this study was to identify the optimal machine
learning methods that can be used to accurately grade gliomas based on magnetic
resonance images (MRI). Materials and Methods: A total of 153 glioma patients from
two medical institutions were enrolled. Four methods, namely support vector machine
-recursive feature elimination (SVM-RFE), least absolute shrinkage and selection
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T X?ao Phg operator (LASSO), max-relevance and min-redundancy (mRMR), and decision trees
E-mail: oo were used to screen glioma features. Five follow-up classifiers, including decision trees

(DT), naive Bayes (NB), K-Nearest Neighbor (KNN), logistic regression (LR), and the
support vector machine (SVM), were then used to develop the models. Receiver
operating characteristic (ROC) curves were then plotted, and the area under the curve
(AUC) was calculated to evaluate the prediction performance of the models. The
accuracy, sensitivity, and specificity of the models were also calculated. Results: A
total of 1070 predictive features based on image histograms, shape, and texture were
extracted from preoperative T1-weighted contrast-enhanced imaging (T1-CE) MRI
scans. The SVM-RFE and SVM models yielded the highest prediction performance with
an AUC, sensitivity, specificity, and accuracy of 0.985, 94.2%, 89%, and 91.1%,
respectively, while LASSO and NB had the lowest accuracy, with an AUC, sensitivity,
L ) specificity, and accuracy of 0.854, 97.9%, 72.3% or 85.1%, respectively. The average
g;’c’/';‘;:g‘;':;m/’,',;m ;a;”"m’csf glioma,  aAyc and accuracy for the four methods were SVM-RFE (0.967, 91.3%), LASSO (0.951,

" g method. 88.1%), MRMR (0.935, 90%), and DT (0.954, 90.4%). In the validation cohort, the
average AUC and accuracy were SVM-RFE (0.837, 80%), LASSO (0.786, 76.6%), mRMR
(0.817, 82.2%) and DT (0.70, 71.1%). Conclusion: The radiomics models could yielded a
good performance in differentiating LGG from HGG, and the SVM-RFE combined with
other machine-learning methods could provide the best average performance.
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INTRODUCTION

MRI is a non-invasive imaging technique that
plays a pivotal role in the diagnosis of gliomas ().

Gliomas are the most common malignant tumors
of the central nervous system (CNS). Based on the
world health organization (WHO) pathological
grading criteria, grades I to Il are classified as
low-grade gliomas (LGG), and grades III to IV are
classified as high-grade glioma (HGG). Grading of
brain gliomas affects the patient treatment strategy
and prognosis (4. Therefore, preoperative
evaluation of brain glioma grade is extremely
important in the management of glioma patients.
Histopathological assessment after surgery or biopsy
is still considered the gold standard for glioma
grading. However, surgery is an invasive procedure
and may not always be feasible. Therefore,
multi-modality magnetic resonance imaging (MRI)
techniques are widely used to facilitate preoperative
grading of glioma.

However, MRI does not always fully reflect the
physiological and pathological characteristics of the
tumor ©). Furthermore, the traditional interpretation
of MRI can be subjective as it relies on a visual
assessment and semi-quantitative descriptive
parameters. Advanced radiomics techniques are now
being developed to facilitate the quantitative
assessment and reduce the subjectivity in imaging
interpretation. These quantitative features can also
be used to assess invisible tumor biological
information such as heterogeneity, angiogenic
characteristics, infiltration, and metastasis. However,
the successful implementation of these models in
clinical practice highly depends on the ease of use
and prediction accuracy of these models.

Radiomics involves the quantitative extraction of
features such as shape, texture, and histograms from
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medical images representing structural,
physiopathologic, and genetic characteristics.
Machine-learning (ML) models are then used to
interpret the image features and produce clinically
relevant information. ML can simulate or mimic
human learning behavior to acquire new knowledge
or skills or to reorganize the existing knowledge
structure to further improve its own performance (7).
Various machine learning techniques have been
developed, and these vary considerably in efficiency
and accuracy.

Various imaging sequences can be used to
facilitate the diagnosis of brain tumors. Fouke et al. ®
suggest that patients with a suspected brain tumor
should be first scanned using T1-weighted imaging
(T1W1), T2-weighted imaging (T2W1), and
gadolinium-based contrast-enhanced T1-weighted
image (T1-CE). However, previous radiomics studies
showed that T1-CE has better predictive performance
when compared with other sequences for grading
gliomas (.10,

At present, many imaging studies have made use
of radiomics technology to compare the accuracy of
the different MRI sequences in predicting tumor
prognosis (910, However, these studies tended to
make use of only one feature-reduction or
classification method to characterize the tumor,
limiting the accuracy of these models. Therefore, this
study aimed to extract a large spectrum of features
predictive of glioma from the T1-CE MRI sequence.
The secondary objective of the study was to test and
validate the predictive performance of various ML
models using different classification methods,
expecting that the results will provide a useful
reference for researchers related.

MATERIALS AND METHODS

Participants

The study was performed in accordance with the
1964 Helsinki declaration and its later amendments
or comparable ethical standards. All procedures
involving human participants were approved by the
Second Affiliated Hospital of Nanchang University
Medical Research Ethics Committee (Jiangxi, China)
[No. Review [2020] No. (033); the number of cases:
153; start-stop time: 2020.06-2020.11]. All patients
with brain glioma who underwent a routine MRI
examination within a week before surgery at two
medical institutions from July 2017 to May 2020
were analyzed. All patients had a histopathological
confirmation of the glioma grade according to the
World Health Organization (WHO) classification of
CNS tumors. None of the patients had undergone
radiotherapy or chemotherapy treatment before the
operation. Patients were excluded from the study if
they had; poor quality images that could not meet the
software post-processing requirements, recurrent

gliomas, brain hemorrhage, and those who had
puncture biopsy before surgery.

MRI scanning parameters

All patients underwent a multi-sequence imaging
protocol on a 3.0 Tesla MRI system (Discovery 750,
GE Healthcare, Milwaukee, WI), with an 8-channel
head coil (GE Medical Systems) using a T1-weighted
spin-echo image (T1WI), a repetition echo time ratio
(TR/TE) of 1,750/25.4 msec, a matrix size of
512x512, a field of view (FOV) of 24x24 cm?, a slice
thickness of 5 mm with a gap of 1.5 mm and an
acquisition time of 1 minute and 29 seconds. An
additional T1WI sequence was acquired after a bolus
injection of 0.1 mmol/kg of gadodiamide (Omniscan,
GE Healthcare, Cork, Ireland) to obtain the T1-CE
image.

Definition of the region of interest (ROI)

ITK-snap software (www.itksnap.org) was used
for manual image segmentation. T1-CE images were
selected for ROI sketch, the ROI delineation was
determined by the enhancement region of tumor, and
it carried out by two senior radiologists with more
than ten years of work experience using double-blind
method. In case of any disagreement on the position
of the ROI, a consensus was reached by discussion,
especially if the positional variations resulted in a
discrepancy.

Feature extraction

The GE-IF (Intelligence Foundry, GE medical)
analysis software based on pyradiomics (python
3.7.3) and matplotLab 3 was used to automatically
identify and extract 1070 imaging features from the
T1-CE images (table 2, part2 of figure 2).

Feature Selection and Model establishment

According to the ratio of 8:2,129 images were
randomly divided into training and validation
datasets. The LGG group was labeled as "0" while the
HGG group was labeled as "1". The missing values
were filled using the median. The synthetic minority
oversampling technique (SMOTE) (1) was used for
sample balancing, and Z-score standardization was
used to normalize the data (12 (parts 2 to 3 of figure
2). Four feature-reduction methods, namely support
vector machine-recursive feature elimination
(SVM-RFE), least absolute shrinkage and
selection operator (LASSO), max-relevance and
min-redundancy (mRMR), and decision trees were
used to screen glioma features. Five follow-up
classifiers, including decision trees (DT), naive Bayes
(NB), K-Nearest Neighbor (KNN), logistic regression
(LR), and the support vector machine (SVM), were
then used to develop the models as indicated in parts
4 to 5 of figure 2.

Model evaluation
For both training and validation datasets, receiver
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operating characteristic (ROC) curves were plotted,
and the area under the curve (AUC) was calculated to
evaluate the prediction performance of the models.
The accuracy, sensitivity, and specificity of the
models were also calculated.

Statistical analysis

The statistical package for the social sciences
(SPSS) software version 22.0 (IBM, Armonk, NY, USA)
was used for data analysis. The quantitative data
were summarized as mean * standard deviation. The
independent sample t-test was used to compare the
differences between the two groups. The chi-squared
test was used to identify whether there was a
statistically significant difference in the gender
between the LGG and HGG. The reported statistical
significance levels were all two-sided, with statistical
significance set at 0.05.

RESULTS

After rigorous screening, 129 cases met the
inclusion criteria, of which 50 were LGG while 79
were HGG. The study cases included 83 men and 46

Table 1. Baseline demographic and clinical characteristics of
the patients.

Low Grade High Grade P-value

Patients (N/%) | 38.7% (50/129) [61.3% (79/129)] NA

women, aged from 20 to 81 years old. (tablel, figure
1). There was a statistically significant difference in
age between the LGG (mean: 42.32 years+16.51) and
HGG (mean: 52.75 years+13.10) groups (P<0.01), but
the difference in gender was not statistically
significant.

The prediction models were established by
different classifiers. For the single model, the
SVM-RFE and SVM model had the highest prediction
performance in the training cohort with an AUC,
sensitivity, specificity, and accuracy of 0.985, 94.2%,
89%, and 91.1%, respectively. On the other hand, the
prediction efficiency for LASSO with NB was the
lowest in the training cohort, with an AUC, sensitivity,
specificity, and accuracy of 0.854, 97.9%, 72.3%, and
85.1%, respectively (figure 3, table 3). The AUC and
accuracy comparison between each model is further
illustrated in Fig 4. In the training cohort, the average
AUC and accuracy for the four models were: SVM-RFE
(0.967, 91.3%), LASSO (0.951, 88.1%), mRMR (0.935,
90%), and DT (0.954, 90.4%). In the validation
cohort, the average AUC and accuracy for the four
models were: SVM-RFE (0.837, 80%), LASSO (0.786,
76.6%), mRMR (0.817, 82.2%), and DT (0.70, 71.1%)
(figure 5).

Table 2. Categories and abundance of the extracted features.

Age (mean +SD) | 42.32+16.51 | 52.75+13.10 | <0.01 Category Number

Gender (N/%) 0.754 First Order Features 18
Male 66.0% (33/50) 63.3% (50/79) NA shape Features 13
Female 34.0% (17/50) | 36.7% (29/79) NA GLCM (Gray Level Co-occurrence Matrix) 23
Glrlm (Gray Level Run Length Matrix) 16

Pa!ientsr\:\:;ll:e:ar:;ilir;ii(ar;;c?r;ﬁrmed GISZm (Gray Level SiZe zone MatriX) 16
newly diagnosis gliomas Gtdm (Gray Tone Difference Matrix) 5
B e at) NGldm (Neighboring Gray Level Dependence Matrix )| 13
With glioma hemorrhage(n=5) Normalized_radial_lengths 3
Area ratio of macroscopic contour 1
Patients eligible in the study(n=129) Roughness index of boundary 1
! Textural_phenotype 23
| Histologic grade | Ipris(Intra-perinodular Textural Transition) 48
ColLIAGe2D 456

Wavelet 434

High grade Low grade Total 1070

(grade M~IV,n=79) (grade I ~II,n=50)

Figure 1. Flow diagram for patient selection and the main
two main grading tasks in our study.

Figure 2. The main procedure of the
proposed radiomics strategy for preoperative
glioma grading. Part 1 shows the region of
tumor (enhanced section) and segmentation
of ROI (red section). Part 2, for e.g, Image
feature like GLCM, Histogram were extracted.
Part 3,four methods (SVM-RFE, LASSO,
mRMR, Random Trees) were used for
features selection and five methods (DT, NB,
KNN, LR and SVM) below Part 4 were used for
model establishment; Part 5, a ROC curve was
used for model evaluation. Abbreviation for
Fig 2: GLCM: Gray-level Co-occurrence
Matrix; DT: Decision Trees; NB: Naive
Bayes;KNN: K-Nearest Neighbor; LR: Logistic
Regression; SVM: .Support Vector Machine.
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Table 3. Classification performance of the LGG versus the HGG cohort using different feature selection modalities.

Model Number of Features after screened |Performance| AUC |Sensitivity |Specificity| Accuracy
Training 0.972 0.894 0.936 0.915
Spearman0.95+SVM-RFE+KNN 16 Validation |0.861| 0.833 | 0.667 | 0.778
. Training |0.935| 0.979 0.787 0.883
Spearman0.95+SVM-RFE+Naive Bayes 15 Validation 10.986 0917 0.833 0.889
Spearman0.95+SVM-RFE+Logistics 15 Training | 0.983| 0.955 0.916 0.920
Regression Validation |0.861| 0.917 0.667 0.833
Training | 0.985| 0.942 0.890 0.911
Spearman0.95+SVM-RFE+SVM 13 Validation | 0.75 | 0.917 | 0.333 | 0.722
- Training 0.962 0.915 0.957 0.936
Spearman0.95+SVM-RFE+Decision Tree 19 Validation 10.729 0917 05 0778
Training | 0.980| 0.905 0.926 0.912
Spearman0.95+LASSO+SVM 23 Validation |0.847| 0917 | 0.667 | 0.833
. Training 0.854 0.979 0.723 0.851
Spearman0.95+LASSO+Naive Bayes 19 Validation 10.764 0.75 0.667 0722
Spearman0.95+LASSO+Logistics 17 Training | 0.977| 0.923 0.918 0.896
Regression Validation | 0.819| 0.833 0.833 0.833
Training | 0.964 | 0.957 0.809 0.883
Spearman0.95+LASSO+KNN 17 Validation |0.958| 1.0 0.5 0.833
.. Training 0.978 0.911 0.923 0.862
Spearman0.95+LASSO+Decision Tree 15 Validation 10.542 0.75 0333 0611
Training | 0.975| 0.936 0.936 0.936
mRMR+SVM > Validation | 0.847 0.667 1.0 0.778
. Training 0.867 0.872 0.851 0.862
mRMR+Naive Bayes > Validation |0.847 | 0.917 | 0.833 | 0.889
e . Training 0.885| 0.894 0.787 0.84
mRMR+Logistics Regression > Validation |0.736| 0.833 | 0667 | 0.778
Training 0.964 0.936 0.872 0.904
mRMR+KNN > Validation |0.778 | 0.917 0.5 0.778
.. Training |0.986| 0.936 0.979 0.957
mRMR+Decision Tree > Validation |0.875| 0.917 | 0.833 | 0.889
Spearman0.95+Random Trees+Decision 6 Training | 0.969 1.0 0.766 0.883
Tree Validation |0.833| 0.917 0.667 0.833
Training 0.947 0.915 0.851 0.883
Spearman0.95+Random Trees+KNN 6 Validation |0.715| 0.667 | 0.667 | 0.667
Spearman0.95+Random Trees+Logistics 6 Training | 0.949| 0.915 0.915 0.915
Regression Validation | 0.75 0.833 0.333 0.667
Spearman0.95+Random Trees+Naive 6 Training 0.928 | 0.915 0.809 0.862
Bayes Validation |0.632| 0.833 0.333 0.667
Training 0.978 0.979 0.979 0.979
Spearman0.95+Random Trees+SVM 6 Validation 10569 0.833 05 0722
0.894 0936 0915 SSK 1
0935 0.787 0.883 SSN 0.9
0916 092 SSL 0.8
0.89 0911 SS8S
0915 093 SSD i 07
0.905 0.926 0912 SLS . 06
0.854 0.851 SLN .
0923 0918 0.89% SLL 0833 0833 083 sLL |95
0.809 0.883 SLK §0.75 05 0833 SLK go4
0911 0.923 [ 0.862 SLD 0.542 075 0611 SLD
- 0.936 0936 0936 MS 0.667 0.778 MS
| 0.867 0.872 0.851 0.862 MN 0.833 MN
[ 0.885 0.894 0.787 0.84 ML 0.736 0.833 0.667 0778 ML
0936 0.872 0.904 MK 0778 05 0.778 MK
I 0936 MD 0.833 MD
0.883 SRD 0.833 0.667 0.833 SRD
0915 0.851 0.883 SRK 0715 0667 0667 0667 SRK
0915 0.915 0915 SRL 075 0.833 0.667 SRL
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Figure 3. Heat map for the performance of various models in training (A) and validation (B) cohort Abbreviation for Figure 3:
SSK,Spearman0.95+SVM-RFE+KNN; SSN,Spearman0.95+SVM-RFE+Naive Bayes; SSL,Spearman0.95+SVM-RFE+Logistics Regression;
SSS, Spearman0.95+SVM-RFE+SVM;SSD,Spearman0.95+SVM-RFE+Decision Tree;SLS,Spearman0.95+LASSO+SVM;
SLN,Spearman0.95+LASSO+Naive Bayes;SLL,Spearman0.95+LASSO+Logistics Regression;SLK; Spearman0.95+LASSO+KNN; SLD;
Spearman0.95+LASSO+Decision Tree, MS; mRMR+SVM, MN; mRMR+Naive Bayes, ML; mRMR+Logistics Regression MK,
MRMR+KNN; MD, mRMR+Decision Tree;SRD,Spearman0.95+Random Trees+Decision Tree; SRK,Spearman0.95+Random
Trees+KNN;SRL,Spearman0.95+Random Trees+Logistics Regression; SRN,Spearman0.95+Random Trees+naive Bayes; SRS;
Spearman0.95+Random Trees+SVM.
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DISCUSSION

Currently, MRI is the most commonly used
imaging method for the diagnosis and monitoring of
glioma. The main advantage of this imaging
technology is that it provides quantitative data that
can be used to assess mass-occupancy effects, edema,
contrast enhancement, and necrosis. This
information can be used to grade gliomas
pre-operatively. Various machine learning models
have been developed to facilitate the grading of
gliomas, but sometimes the performance of
prediction models is limited since they are often
based on a limited number of features and a
inappropriate feature selection method. In the study,
we made use of four different feature extraction
methods, including SVM-RFE, LASSO, mRMR, and DT,
to extract 1070 glioma features from T1-CE images.
Five follow-up ML classifiers, including DT, NB, KNN,
LR, and SVM, were then used to develop predictive
models.

Our findings indicate that models like LASSO with
DT and RT with NB had high AUC values in the
training dataset with a considerably lower AUC
following validation. These models tend to be prone
to over-fitting. Over-fitting occurs when the full
model contains too many covariates relative to the
amount of information (sample size and number of
outcome events) in the sample (13), As a result, the
over-fitting model often appears to work well in the
training set but poorly in the validation set. In other
words, the generalization ability of the model is
weak. In order to minimize the risk of over-fitting,
the optimum number of hidden nodes was
determined by adopting ten-fold cross-validation.
Moreover, models with both high AUC and high
accuracy in both training and validation datasets
were selected to further minimize the risk of
overfitting. The average performance of each group
(SVM-RFE, LASSO, mRMR, RT) in both training and
validation datasets was therefore compared, and the
optimal model was selected (figure 5).

Support vector machines (SVM) is a powerful tool
that can be used to analyze data with a number of
predictors approximately equal to or larger than the
number of observations (13) and can therefore be used
for both feature selection and model building. It is,
therefore, one of the most commonly used ML
algorithms in tumor differentiation and gene
selection (1415). SVM-RFE requires training of the SVM
classifier with a linear kernel function and a
computation of the ranking criterion for all features
in order to identify and remove the smallest ranking
criterion. Tian et al adopted this method and
combined it with radiomics for glioma grading. In
this study, SVM achieved good prediction results ),
with a grading accuracy and an AUC of 89.2% and
0.946, respectively. On the other hand, Zhou et al. (16)
used ML algorithms and achieved high accuracy in
the prediction of isocitrate dehydrogenase 1 (IDH1)

genotype in gliomas and moderate accuracy in a
three-group prediction including IDH genotype and
1p19q co-deletion. In our study, most of the models
constructed with SVM-RFE obtained optimal
prediction performance.

LASSO and mRMR, and RT are the most
commonly used feature reduction methods in
radiomics with very high performance levels for the
characterization of gliomas. Wang et al. used LASSO
for feature extraction and selection, eventually
achieving an AUC on T1-CE sequences of 0.914 in the
training cohort (07). Sun et al (18 used mRMR to
predict vascular endothelial growth factor (VEGF)
expression in patients with diffuse gliomas based on
radiomics, eventually achieving a AUC of 0.741 in the
training group and 0.702 in the validation group.

In our study, we evaluated 20 different model
combinations to identify the best performing models
in the grading of gliomas. However, the main
limitation of our study was the small sample size,
which eventually led to over-fitting. Therefore, our
future studies will loop in more data to improve the
generalizability of the models. The models should be
further optimized by selecting the best predictive
features to minimize the over-fitting problem 9.
Furthermore, feature extraction was performed on
T1-CE images only, other MRI sequences such as
T1WI, T2WI, or apparent diffusion coefficient (ADC)
sequences could potentially be used to extract
additional predictive glioma features and hence
improve the performance of the models. Not all
classifiers were evaluated in our study. Other
classifiers like principal component analysis (PCA)
(20) and linear discriminant analysis (LDA) warrant
further investigations as they were found to perform
well in previous studies (21). Finally, there is the need
to develop models that can be used clinically to
predict prognosis and facilitate therapeutic
management based on various tumor characteristics.

CONCLUSION

The results suggest that based on the T1-CE
sequence, these radiomics models could yielded a
good performance in differentiating LGG from HGG.
Among them,the SVM-RFE algorithm combined with
other machine-learning method provided the best
average predictive performance. Therefore, this
model could provide a non-invasive tool to grade
gliomas pre-operatively, eventually facilitating
patient management.
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