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Treatment strategies for radiation-induced brain injury 

INTRODUCTION 

Radiotherapy is widely used to treat recurrent 
cancer, such as brain and breast carcinomas.                 
Radiation exposure usually depends on the type of 
malignancy. Whole-brain radiotherapy (WBRT) is 
the treatment of choice for local recurrence after  
surgical resection of brain metastases. Yet, radiation 
to the brain may cause certain side effects. RIBI is a 
common complication caused by radiation treatment 
for head and neck tumors (1). The longer the radiation 
exposure, the more malignant the disease. Acute                
injury and subsequent long-term damage often lead 
to multifocal hypometabolism and persistent                 
neuroinflammation of the brain (2).  

According to clinical symptoms, RIBI can be             
classified into three stages: an acute stage, an early 
delayed stage, and a late delayed stage (3,4). Acute RIBI 
often occurs days or weeks after irradiation (5),            
mainly due to cerebral edema, increased intracranial 
pressure, and transient neurological impairment 
caused by increased blood-brain barrier (BBB)               
permeability. Its main clinical manifestations include 
headache, nausea, vomiting, increased body            
temperature, disturbance of consciousness, and             
convulsions, which are generally recoverable. Early 
delayed RIBI is usually a temporary and reversible 
white matter injury that occurs after a few weeks to 3 
months after brain radiotherapy and is mainly       

characterized by demyelinating lesions of                        
oligodendrocytes with axonal edema. Its clinical  
manifestations include lethargy, nausea, and                    
irritability, which can usually be cured after active 
treatment during this period. Late delayed RIBI             
complicated with abnormal vascular changes and 
demyelination (6), and white matter necrosis often 
occurs 6 months after irradiation (7,8); this stage is 
commonly irreversible and progressive (figure 1). 
According to the volume range of therapeutic              
radiation, late RIBI (3 months to several years) is  
accompanied by local nerve tissue abnormalities and 
increased intracranial pressure, and its diagnosis, 
which is based on the clinical manifestations alone, is 
difficult to establish. During this stage, low-density 
areas of white matter increase with irregular              
enhancement effects on the computed tomography 
(CT) images, accompanied by diffusing edema around 
the lesion and varying degrees of space-occupying 
effects (9). Similar changes are shown on magnetic 
resonance imaging (MRI). Under MRI, RIBI is usually 
seen as peripheral enhancement accompanied by 
mild mass effect and peripheral edema. The               
important microscopic changes of RIBI include              
fibroid necrosis of vessels, coagulative necrosis,              
peripheral reactive gliosis, and vascular hyalinization 
with luminal stenosis (10). The most obvious clinical 
features are personality changes, memory loss,              
decreased concentration, and dementia. The main 
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manifestations among children are growth delay and 
mental retardation, which eventually lead to severe 
dementia.  

 
Currently, the mechanism leading to RIBI is               

believed to involve vascular injury, glial cell injury, 
autoimmunity, inflammation, and nerve injury. The 
most conventional therapeutic protocols include  
steroid hormones, vasodilators, dehydrating agents, 
neuroprotective agents, hyperbaric oxygen therapy 
(HBO), and surgery.  

In this review, we summarized recent progress in 
the treatment for RIBI (primarily focusing on the 
therapeutic agents) as well as the pathogenesis of 
RIBI, including vascular injury, glial cell injury,              
immune-inflammatory response, and neuronal              
damage. By exploring the mechanism and treatment 
options, we can seek more effective drugs to treat 
RIBI patients. 

 
 

MATERIALS AND METHODS 
 

 A systematic search was conducted through              
PubMed/Medline, EMBASE, and Cochrane library 
databases about the articles with the keywords of 
radiation-induced brain injury, pathogenesis and  
protective agents. 

 
RIBI pathogenesis 

 The current pathological changes of RIBI include 
vascular injury, immune-inflammatory response, and 
neuronal damage (figure 2). 

 
Vascular injury 

Radiation causes vascular tissue damage and            
affects oxygen diffusion between the brain and blood 
vessels. Also, the expression of hypoxia-inducible 
factor (HIF)-1α in the brain increases and then                
activates the astrocytes, which secrete the vascular 
endothelial growth factor (VEGF), thus promoting 
angiogenesis. These new blood vessels, which have 
high permeability, further promote the infiltration of 
surrounding tissue fluid and consequently lead to 
cerebral edema (figure 2b) (11). Vascular injury is  

728 

represented by loss of endothelial cells and increased 
blood vessel permeability, which would leads to late 
delayed RIBI (12). Compared with healthy individuals, 
patients who undergo radiotherapy suffer from more 
plaque formation, hemodynamic abnormalities, and 
common thickening of intima-media thickness (13). 
Some studies suggested that RIBI is a multifocal             
cerebrovascular injury manifested as perivascular 
edema and abnormal angiogenesis (14). In a mouse 
model of RIBI, established using a single large dose of 
radiation, the number of vascular endothelial cells 
was significantly reduced in the early stage after              
irradiation (15). The number of endothelial cells and 
density of blood vessels were found to decrease in a 
time- and dose-dependent manner (15, 16). Previous 
studies have suggested that vascular endothelial cells 
lose collagen connectivity after radiation, which            
affects the smoothness of the endothelium, and even 
results in endothelial defects (17). Moreover, radiation 
can also cause DNA damage. The p53-dependent 
apoptosis mechanism in the mitochondria and the 
death receptor pathways regulated by neuroamide 
often lead to the death of endothelial cells (18). 

Radiation induces an immune and inflammatory 
reaction in the brain  

An inflammatory response occurs in the damaged 
tissues when the whole brain is irradiated. Nerve 
cells mainly include myelin-producing glial cells,           
astrocytes, and microglia. Microglia are important 
immune cells of the CNS (19). In the healthy brain, 
healthy neurons express and secrete molecules 
(CD47, CD55, CD20, and CX3CL1), maintaining         
adjacent microglial cell stationery. Cerebral vascular 
endothelial cells are also in a quiescent state,                
allowing a continuous flow of blood lymphocytes 
(figure 3).  

After radiation, neurons and microglia are directly 
affected (cellular damage and activation). Damaged 
neurons secrete pro-inflammatory cytokines             
activating microglia (figure 2c). The brain's immune 
and inflammatory responses may be activated in            
different ways, which are explained in the following 
paragraphs (figure 4).  
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Figure 1. The development timeline 
of Radiation-induced brain injury. 

Figure 2. Illustration schemes of Radiation-induced brain 
injury. 
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Microglia are activated through the NF-κB                  
pathway (figure 4a), which then activate MHC        
molecules. At the same time, microglial cells secrete 
pro-inflammatory cytokines (COX, IL1-β, IL-6, and 
TNF-α) (20, 21), chemokines (CX3, CL1, CCL3), which 
activate antigen-presenting cells (APCs) in the brain 
(22, 23). 

Damaged neurons secrete the high-mobility group 
protein 1 (HMGB1), which then activates microglia 
that swallow damaged and healthy neurons (figure 
4b). Moreover, pro-inflammatory signals emitted by 
microglia and HMGB1 activate dendritic cells, which 
migrate to regional lymph nodes due to increased 
BBB permeability and induce immune activation in 
the brain. The most commonly activated immune 
cells are regulatory T cells (24, 25), which produce IL-10 
and TGF-β.  

CCL2 could induce peripheral macrophages to 
express CCR2, which penetrate the BBB. Activated 
microglia also increase CCL2 and CCR2 expression 
(figure 4c). At the same time, radiation upregulates 
the adhesion markers (ICAM-1, P-selectin), which 
allows peripheral lymphocytes and monocytes to 
adhere to endothelial cells and migrate through the 
microvessel wall (26). 

Immune and inflammatory reaction induced by 
radiation is a complicated process that involves           
various cellular components and the surrounding 
immune system (27). The extent of radiation-induced 
injury, such as inflammation or immune response, is 

determined by the radiation type, dose, delivery 
method, and total cumulative dose (28). 

 

Neuronal damage and cognition dysfunction 
One of the severe outcomes in patients with             

fractionated partial brain irradiation is significant 
cognitive impairment at > 6 months after irradiation 
(29), which significantly affects the quality of patients’ 
life. Cognitive deficits usually include a decrease in 
memory. Studies on memory of RIBI animals                    
evaluated using Morris water maze (30-33) showed 
increased average escape latency and decreased 
number of crossing platforms compared to control 
animals, which suggested that the learning and 
memory ability of animals is decreased  

It is well known that radiotherapy can prolong 
survival in patients with brain tumors; yet, previous 
studies have also suggested that 50 - 90% of adult 
patients with brain tumors usually present cognitive 
impairment (decreased memory ability (learn, verbal, 
and work) even dementia) after fractionated                  
irradiation lasting six months (18,34). Once the patient 
receives radiotherapy, the hippocampus and                  
temporal lobes damage lead to a cognitive function 
decrease (35). Therefore, selectively avoiding critical 
brain areas for irradiation may be essential to            
preserving cognitive function. 

Damage to neurons is well known to cause              
reduced memory function. After brain inflammation, 
inducible NO synthase (iNOS) expressed in                     
macrophages, neutrophils, and microglia increase NO 
levels in the brain. Radiation oxidizes water, which in 
turn produces hydroxyl radicals (36). Hydroxyl                
radicals are also indirectly produced by forming            
secondary partial active oxygen, including                     
superoxide, hydroxyl, and NO radicals (figure 2a and 
figure 5). Several reports suggested that free radicals 
lead to the loss of neurons (37). Spatial memory and 
learning deficits have also been correlated with              
hippocampal neurons damaged (38-40). Neurons are 
known to underlie endogenous synapses and control 
cognitive behavior. The impaired neuronal function 
can cause mental retardation, memory loss,                   
dementia, and ataxia. In vivo and in vitro studies have 
shown that radiation induces changes in hippocampal 
cell activity, synaptic efficiency, synaptic production, 
and neuronal gene expression (3). Yet, the acute            
effects of radiation on synaptic function on neurons 
are still not well understood.  

Therapeutic protocols of RIBI 
The occurrence and extent of RIBI are related to 
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Figure 3. Cells in the healthy brain. 

Figure 4. The immune and inflammatory reaction in brain 
induced by radiation. 

Figure 5. The relationship between apoptosis in hippocampal 
neurons and oxidative stress. 
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the radiation dose, exposure volume range, age, time, 
physical condition, etc. Hyperbaric oxygen (HBO), 
glucocorticoids, nerve growth factor, bevacizumab, 
and craniotomy are common treatments used for 
RIBI. A craniotomy is a highly invasive and risky               
procedure that is usually only considered when              
extensive cerebral edema and space-occupation are 
detected. In addition to surgery, the therapeutic            
protocols of RIBI include the therapeutic agents, 
HBO, and stem cells transplantation. Therapeutic 
agents are those used to decrease apoptosis, inhibit 
immune responses, improve microcirculation, and 
eliminate reactive oxygen (41). However, RIBI patients 
with increased intracranial pressure need long-term 
dependence on dehydrating agents and hormone 
maintenance therapy. 

 

Therapeutic agents 
Glucocorticoids (GC) 

The main clinical manifestations of RIBI are               
increased intracranial pressure caused by cerebral 
edema and localized symptoms or signs caused by 
necrotic brain tissue. Moreover, an inflammatory 
response occurs in the damaged tissues when CNS is 
irradiated (42). Dehydration combined with                    
immunosuppressive agents (such as GC) is a common 
treatment for RIBI (43-45). GC is a steroid hormone 
with strong immunosuppressive and anti-
inflammatory that has an important role in regulating 
the immune system and is the endocrine basis of  
inflammatory diseases. GC binds to the GC receptor 
(GR) in the cytoplasm and then moves through the 
nuclear pore (NP) to the nucleus. The complex then 
binds to GC-responsive elements (GRE) and activates 
gene transcription (figure 6). The expression of               
anti-inflammatory proteins is then upregulated, and 
the expression of pro-inflammatory proteins in the 
cytosol is suppressed (46).  

Some studies have found that GC could reduce the 
permeability of BBB in mouse vascular brain                 
endothelial cells (47, 48). However, this relief is                    
temporary and cannot reverse or inhibit the clinical 
progress of RIBI, and its effective rate is only about 
20% (49). Long-term use of hormones can also cause 
complications, such as infection, ulcers, high blood 
pressure, osteoporosis, and muscle atrophy. There is 
still a controversy as to whether select a high-dose 
attack regimen or low dose maintenance. 

 

Bevacizumab 
Bevacizumab is a humanized monoclonal                   

antibody targeting VEGF, which has been used to 
treat RIBI by reducing vascular injury and                       
permeability brain edema (50,51). In addition,               
bevacizumab has a long half-life (approximately 
three weeks) (52, 53), and a good therapeutic effect for 
patients with RIBI with poor hormone effects (54). 
Neuroimaging studies demonstrated that                     
bevacizumab could alleviate brain radiation necrosis 
(55,56). A recent study included 17 RIBI patients with 

head and neck tumors treated with bevacizumab.  
Except for one case that had no obvious therapeutic 
effect, the brain injury lesions of the other patients 
showed significant improvement in imaging (57). The 
bevacizumab application after radiotherapy could 
significantly prolong the survival of RIBI patients, 
improve clinical effects and cognitive function, and 
finally reduce the RIBI incidence (58). Yet, considering 
that necrotic brain tissue has no blood vessels, 
bevacizumab has been shown ineffective in RIBI           
patients with necrotic brain tissue (11). 

 

Edaravone 
There is a relationship between apoptosis in               

hippocampal neurons and oxidative stress.                     
Edaravone, a new free radical scavenger, positively 
affects the pro-inflammatory response, nitric oxide 
production, and apoptotic cell death (59, 60). The neuro-
logical symptoms of nasopharyngeal carcinoma were 
significantly improved after radiotherapy with               
edaravone treatment. The brain edema and brain       
necrosis volume of patients significantly decreased 
(61). Recently, it has been found that cognitive               
dysfunction after brain radiation therapy may be            
related to hippocampal neurogenesis damage caused 
by oxidative stress. This damage is induced by                
proliferating neural stem cells (NSCs) or progenitor 
cells (62). Edaravone can protect NSCs from cell death 
and restore differentiation after irradiation, while 
edaravone has no obvious protective effect on human 
brain tumor cells (63). 

 

Cyclooxygenase-2 (COX-2) inhibitor 
Cyclooxygenases are the main mediators of                

inflammation, which act by catalyzing the metabolism 
of arachidonic acid and prostaglandin synthesis (64, 65). 
A previous study found that radiation induced an  
increase in the expression of COX-2 protein after 
brain irradiation in male C57/BL6 mice, as well as the 
increase in prostaglandin E(2) and thromboxane A(2) 
(66). Furthermore, it showed that NS-398, a selective 
COX-2 inhibitor, could reduce prostaglandin                    
induction and edema formation against RIBI. The  
production of prostaglandin E2, which is a COX-2  
biological product, was reduced by 75% in irradiated 
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Figure 6. Mechanisms of glucocorticoid (GC) action. 
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brains after giving meloxicam (67, 68). Celecoxib is a 
paradigm-selective inhibitor of cyclooxygenase-2, 
which can reduce the damage of BBB and brain             
edema after radiotherapy. By inhibiting the                
expressions of NF-κB and vascular endothelial 
growth factors, the level of radiation inflammation 
and cerebrovascular damage could be alleviated (69). 

Curcumin 
Curcumin is a natural ingredient in turmeric            

rhizomes with anti-oxidation, anti-inflammation,  
inhibition of angiogenesis, and antitumor properties. 
Curcumin can restrain NF-κB and iκB kinase,                 
inhibiting proliferation and inducing cell apoptosis 
(79, 80). It can also effectively reduce cerebral edema in 
rats with intracerebral hemorrhage by inhibiting the 

NF-κB pathway and subsequent aquaporin                      
expression (70). In vitro showed that curcumin can 
stimulate neurogenesis, synaptogenesis, and cell     
migration of brain-derived adult neural stem cells, 
thus could be used as a suitable drug candidate for 
radiation-induced neuropathic applications (71).              
Curcumin could also significantly ameliorate the BBB 
damage in the brain to treat RIBI, which is mainly 
manifested in the decreased expression of glial              
fibrillary acidic protein and the increased expression 
of cyclic nucleotide 3' phosphohydrolase in the             
hippocampus (81). 

 

Corilagin 
Corilagin is a type of tannin family with anti-

inflammatory activities that can enhance                          
angiogenesis and reduce oxidative stress by               
regulating the Nrf2 signaling pathway against             
cerebral ischemic injury (72). Another study showed 
that corilagin mitigated the cognitive impairment in 
RIBI mice and partially protected the BBB integrity 
from RIBI. Corilagin could inhibit the activation of 
microglia by the NF-κB pathway and reduce the             
expression of inflammatory cytokines against RIBI (73, 

74). 
 

Quercetin 
Quercetin has strong antioxidant activity.                  

Histopathological data showed that the degradation 
and infiltration of cells were significantly reduced 
with quercetin, which demonstrated its obvious              
neuroprotective effects (82). The administration of 
quercetin before radiation could significantly                    
increase the cytoskeletal protein Tuj1 and the                 
neurotrophin brain-derived neurotrophic factor in 
the neuron, suggesting its neuroprotective effect on 
the brain against radiation-induced inflammatory 
responses (83). Quercetin can also effectively protect 
oligodendrocyte precursor cells from radiation injury 
by oxygen-glucose deprivation in vitro, and                     
this mechanism may be related to the activation                
of the phosphatidylinositol-3-kinase/alanine               
aminotransferase assay signaling pathway (75). It 
could repair brain injury by inhibiting inflammation 
and apoptosis, thus promoting recovery of nerve 
function (76). 

 

Kukoamine A 
Kukoamine A (KuA) is a natural bioactive alkaloid 

found in wolfberry root bark, which has diverse   
therapeutic effects, including anti-oxidation,                
neuroprotection, and anti-inflammation. KuA can 
reduce malondialdehyde levels, increase glutathione 
and superoxide dismutase levels by regulating the 
expressions of caspase-3, cytochrome C, Bax, and 
Bcl2 catalase, and inhibit the apoptosis of neuron 
cells after whole-brain irradiation (77). In addition, 
KuA can reduce the activation of hippocampal               
microglia in rats (78). Therefore, KuA can serve as a 
neuroprotective agent on RIBI by inhibiting neuronal 
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Drugs Company Formulations Mechanisms 

Edaravone 

Nanjing 
Xiansheng 
Dongyuan 

Pharmaceutical 
Co., Ltd. 

Injection 

Reduce cerebral 
edema (61). 

Protect ischemic 
neurons (63) 

Promote the 
recovery of 

nerve function 
(63) 

Bevacizumab 
Qilu 

Pharmaceutical 
Co., Ltd. 

Injection 

Reduce cerebral 
edema (50,51) 

Reduce vascular 
injury (50,51) 

Celecoxib 
Pfizer 

Pharmaceuticals 
LLC 

Capsules 

Reduce the 
damage of brain 
edema and BBB 

(69) 

Table 1. Commercial drugs for the treatment of RIBI. 

Chinese medicine has also attracted much attention due to its            
advantages of multiple targets and low toxicity (table 2, https://
m.chemicalbook.com/). 

Main 
ingredients 

Chemical formula 
Mechanism of 
treating RIBI 

Curcumin  

Reduce cerebral 
edema (70) 

Neuroregeneration 
(71) 

Corilagin  

Enhance angiogen-
esis (72) 

Anti-inflammatory 
(73,74) 

Quercetin  
Anti-oxidation (75) 
Anti-inflammatory 

(76) 

Kukoamine 
A 

 

Neuroprotection 
(77) 

Anti-inflammation 
(78) 

Table 2. Chinese medicine for the treatment of RIBI. 
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oxidative stress and cell apoptosis. 
 

Other drugs 
There are some other reported effective drugs for 

RIBI treatment. (1) Magnesium can exert protective 
effects against RIBI by reducing calcium overloading, 
improving oxidation-reduction, and inhibiting                
apoptosis (84). In addition, it can significantly reduce 
the protein or mRNA levels of NF-κB and intercellular 
adhesion molecule-1 (85). (2) Valproic acid can inhibit 
the generation of reactive oxygen species by                    
regulating the nuclear factor erythroid-2-related  
factor 2/heme oxygenase-1, which may improve              
cognitive behavior following RIBI (86). It could also 
improve the effectiveness of glioma radiotherapy by 
protecting normal hippocampal neurons (87). (3)              
Tamoxifen is a selective estrogen receptor modulator 
approved by FDA for its diverse neuroprotective 
properties. It can regulate antioxidants, anti-
inflammatory and anti-glial hyperplastic responses 
(88). Tamoxifen can significantly reduce the activation 
of astrocytes and neuronal apoptosis after radiation 
therapy, which is conducive to the structural                  
reconstruction and functional recovery of the brain 
(89). (4) Chinese medicine Shenqi Fuzheng injection 
could effectively reduce RIBI by inhibiting the NF-κB 
signal pathway and microglial activation (90, 91). 
Tanshinone IIA has also been found to restore RIBI 
by reducing apoptosis and brain edema (92).                    
Acanthopanax senticosus (AS) is a widely used Chinese 
herbal medicine rich in phenolic compounds with 
antioxidant and anti-inflammatory properties (93). It 
can maintain the normal activity of the nervous               
system of rats by regulating various signaling               
pathways, which has a positive effect on the                 
movement, fission, structure, adhesion, and                
phagocytosis of nerve cells (94, 95). 

 

HBO 
During HBO therapy, the patient inhales 100% 

oxygen at a pressure of at least 1.5 atmospheres        
absolute (150 kPa) (96). HBO can be used as a                 
radiosensitizer to enhance the effect of radiation or 
as a therapeutic agent to reduce delayed radiation 
damage (96-99). It helps oxygen dissolve in plasma and 
reach the brain independent of hemoglobin. In              
addition, HBO could promote the formation of new 
blood vessels in areas where the partial pressure of 
oxygen is reduced due to vascular damage, which can 
restore radiation-induced damage. 

Combined with HBO, radiotherapy can destroy 
tumor cells and control the growth of tumor cells and 
reduce the incidence of RIBI, as well as prolong the 
survival time (100, 101). A clinical trial involving 505 
patients with various cancers studied the effects of 
HBO on radiotherapy. Compared with patients only 
receiving radiotherapy, patients with cervical or 
bronchial cancer receiving maximum-dose                      
radiotherapy and hyperbaric oxygen showed higher 
survival (102, 103). 

HBO is a non-invasive treatment that promotes 
tissue repair and accelerates the recovery of the 
nervous system (104, 105). Small retrospective studies 
have shown that the stability or improvement rate is 
higher in 70-80% of the patients receiving treatment 
(106-108). Also, data from patients with symptomatic 
brain radiation necrosis treated with HBO between 
2008 and 2018 showed that HBO could improve                
clinical and radiologic effects in most cases (109). The 
prophylactic effect of HBO therapy for RIBI patients 
with brain metastasis was evaluated. The rate of 
white matter damage in the HBO group (2%) was 
lower than that in the non-HBO group (36%) (110). 

Many patients receiving radiotherapy can reduce 
the dose of hormonal drugs during or after HBO  
therapy. Despite common complications, HBO is              
considered relatively safe with tolerable toxicity. 
Clinically, it is also often combined with other               
interventions (such as bevacizumab) to treat RIBI. 
Endostar® (a commercial recombinant human            
endostatin injection) combined with short-term HBO 
therapy reduces the necrosis area of the radiated 
brain with non-recurrence (111). 

 

Stem cells transplantation 
Stem cell transplantation is a promising treatment 

protocol for CNS damage. Stem cells are pluripotent 
cells that can differentiate into cells with different 
functions and structures. Mesenchymal stromal cells 
(MSCs) can potently alleviate radiation-induced fever 
by inhibiting activation of the related domain (112). A 
combination of MSCs and nimodipine has a good 
therapeutic effect in RIBI mice, which was mainly 
reflected by improved exercise and cognitive ability, 
and decreased percentage of necrotic neurons and 
astrocytes in mice. Combination therapy with other 
methods is more effective than MSC alone. After    
receiving treatment, the expression of pro-apoptotic 
indicators (p53, Bax) and anti-apoptotic indicator Bcl
-2 increases, thus protecting brain cells from further 
injury. The therapeutic effects of the combination of 
MSCs and nimodipine may be related to the                        
inhibition of cell apoptosis and the promotion of         
mesenchymal stem cells to move to damaged brain 
sites (113). 

In addition, stem cells powered by electric        
vehicles can effectively treat brain injuries, including 
cognitive deficits caused by radiation (114). Adult stem 
cells can also restore cognitive function in mice with 
neurodegenerative diseases and brain damage by 
reducing oxidative stress and promoting                     
hippocampal neurogenesis (115). After neural stem 
cells were transplanted into the brain of rats exposed 
to radiation, the cognitive dysfunction of these rats 
was restored, and the defects of hippocampal                
function induced by radiation were improved,               
suggesting that stem cell transplantation is feasible 
for the treatment of RIBI (116). 

It should be noted that there may be safety          
concerns about grafting foreign stem cells into the 
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brain. Therefore, cell-free alternatives are necessary. 
Stem cell-derived extracellular vesicles are nano-
sized lipid-bound vesicles that could easily pass 
through BBB (117). They may be effective in treating 
RIBI, especially radiation-induced cognitive deficits. 

 
 

DISCUSSION 
 

Radiotherapy is an important treatment strategy 
for head and neck tumors. However, the related RIBI 
cannot be ignored. Many long-term studies have been 
conducted on the diagnosis, mechanism and                  
treatment of RIBI. Yet, so far, no fully effective               
treatment method for RIBI has been developed, 
which is mainly attributed to the complexity of the 
CNS. Due to the complex structure of the brain and 
the indivisible human body, the mechanism that       
causes RIBI is not associated with a single factor. The 
above mechanisms may have a hierarchical                  
relationship or different pathogenesis and vary from 
patient to patient. For RIBI, prevention may be more 
important than treatment due to the complicated 
injury mechanism. On the one hand, precise localized 
radiation and a detailed dose fractionation regimen 
are necessary (118-120). On the other hand, efficient 
radiation protectants are needed to treat or prevent 
RIBI by eradicating free radicals, anti-inflammation 
or neuron restoration. Due to the complex damage 
mechanism of RIBI, traditional Chinese medicine may 
be more effective and superior to the treatment of 
RIBI than the use of single drugs due to its multiple 
targets.  

Currently, the diagnosis of RIBI relies heavily on 
magnetic resonance imaging (MRI)(9, 121). However, its 
diagnostic value is limited because white matter           
edema and demyelination commonly reveal diseases 
at a later stage. A radiodiagnosis approach can also 
help address microstructural changes in the temporal 
lobe that are not visible to human eyes, enabling              
precise prediction of RIBI, especially at early stages. 
Preclinical studies have shown that white matter  
lesions are the earliest form of radiation injury (122, 

123). The three radiodiagnosis models using                         
T2-weighted images can help to better detect white 
matter lesions (121). Contrast-enhanced T1-weighted 
images better indicate radiation-induced vascular 
changes. The combination of different MRI measures 
can therefore improve the predictive performance of 
RIBI. Recently, functional imaging techniques such as 
dynamic contrast enhancement (DCE), diffusion-
weighted imaging (DWI), magnetic resonance               
spectroscopy (MRS), and diffusion tensor imaging 
(DTI) have been also used to provide functional and 
metabolic information (124-127).  

In-vivo experiments are conductive and important 
to study the pathogenesis, intervention, and               
optimization of the treatment strategies for RIBI. 
Many novel protocols are confirmed to effectively 
treat RIBI in various animal models. Rats and mice 

remain the most commonly used RIBI models (128). On 
this basis, neuronal regeneration, inflammatory 
mechanism, and glial cell function related to RIBI are 
evaluated, which is important to study the damage 
mechanism of RIBI. Nevertheless, the differences  
between rodents or cells and humans are substantial. 
Therefore, transforming RIBI treatment strategies 
from animal to clinical applications remains                   
challenging. Preclinical studies can provide direction 
for the research on the pathogenesis of RIBI and                
provide reliable experimental, and theoretical               
support for the transformation from animal                
experiments to clinical experiments and applications. 
So, experiments are combined with actual clinical 
practice to find new targets or approaches for the 
treatment of RIBI. 

 
 

CONCLUSION 
 

Thanks to the advancements in radiotherapy  
technology, radiation-induced brain injury has been 
gradually decreased. The mechanisms causing RIBI 
may have a hierarchical relationship or different 
pathogenesis. Traditional Chinese prescriptions may 
be more powerful and superior for the efficient            
treatment of RIBI due to their multiple targets. The 
next study emphasis should be focused on neuronal 
regeneration, inflammatory mechanism, glial cell 
function and so on, which could provide new targets 
or applicable approaches for the valid treatment of 
RIBI. 
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