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The effect of feeding state on the level of detections of plasma 
metabolites in rats after irradiation 

INTRODUCTION 

Along with the extensive application of atomic 
energy and nuclear medicine, there is growing                
concern over how radiation will affect the                    
environment and human health. To evaluate                
radiological hazards, diagnose and treat various types 
of radiation-related damage, novel methods that can 
estimate biological exposure in a time-saving way are 
urgently needed (1). Conventional biological methods 
of estimating radiation dosage include chromosome 
aberration analysis (2-6), premature chromosome  
condensation assay (7, 8), micronucleus assay (9-11), 
somatic cell mutation detection (12), etc. Lately,           
researchers at Columbia University established Rapid 
Automated Biodosimetry Tool to measure the level of 
γH2AX of leukocytes as a marker for DNA damage (13); 
however, these methods have some drawbacks to 
some extent, for example, time-consuming processes, 
complicated procedures, high cost, etc. Consequently, 
seeking novel ionizing radiation associated biological 
markers and widely-applicable testing methods are 
tasks of top priority, which will bring about             
significant influences on both rescue efficiency           
and therapeutic effect. Following genomics and             
proteomics, metabolonomics has become an          
emerging research hotspot (14-16). Detecting changes 
in the amounts of amino acid metabolites or           
cytokines in the blood (urine) samples of radiation 

victims directly with highly sensitive instruments 
saves time, while being more sensitive, reliable, and 
minimally invasive, and more widely applicable (17, 18). 
Biological markers can not only help to study               
pathogenesis from a molecular perspective but also 
have their unique advantages in terms of evaluating 
accuracy and sensitivity for low-level damage in early
-stage, thus providing early warning and auxiliary 
diagnosis (19). Collecting blood samples for early            
diagnosis, physical examination, and prognosis           
analysis has been well known and widely applied in 
clinics for human medicine, in which some                     
examinations require the patient to have an empty 
stomach in the morning to avoid interference arising 
from dietary metabolism (20-24). 

Although there have been reports on a dose          
estimation method established by measuring the  
content change of metabolites after radiation, a 
search of the literature found that the feeding             
conditions of animals before blood harvesting remain 
unclear or simply were not investigated (18, 25). To 
judge whether feeding conditions before hemospasia 
affect the serum biomarker levels of experimental 
animals after radiation, we did cut off their food and/
or water supply before blood harvesting. Then the 
levels of IL-6 (interleukin-6, inflammation factor) and 
Gly (glycine, amino acid metabolites) were measured 
for analysis and assessment. The aim of our current 
work is to provide an experimental standard in       
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before blood harvesting.  
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animal blood harvesting for the measurement of            
biomarkers in serum or plasma, to establish an ideal 
radiation dosage biological model for radiation              
protection or diagnose the disease with more authen-
tic, more accurate detection data. 

 
 

MATERIALS AND METHODS 
 

Irradiation experiment 
The irradiation in this study was carried out by 

the X-Rad 320 irradiator (USA) at the research              
platform of radiation protection and emergency  
technology in Southern Zhejiang, Wenzhou Medical 
University. The dose rate was 2 Gy/min. 

 

Animal grouping and treatment 
Animal experiments conducted in current           

experiment were approved by Wenzhou Medical  
University Institutional Animal Use and Care           
Committee. Sixty male SD rats (at an age of seven 
weeks) were purchased from Zhejiang Vital River 
Experimental Animal Technology Co. Ltd (Charles 
River Lab. China). The rats were randomly divided 
into two groups (n = 30) and were irradiated with 0 
and 8 Gy. 

Before blood samples were collected on the             
seventh day after irradiation, 60 rats were divided 
into twelve groups (five rats per group) following               
different feeding treatments (table 1). 

 
The blood samples of rats in each group were  

harvested, using the tail-cutting method, into the 
blood collection vessels containing anticoagulant, and 
centrifuged at 3000 rpm for 5 min. The plasma was 
collected and stored at -80 °C for subsequent use. 

 

Measurement of serum metabolites 
The rat IL-6 enzyme-linked immunosorbent 

(ELISA) kit was purchased from Shanghai Shenggong 
Co., Ltd; Rat Gly ELISA kits were purchased from          
Wuhan Moshak Biotechnology Co., Ltd. The BioTek 
800 (BioTek Company of the United States)                   
microplate meter was used to measure the OD value 
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of serum metabolites. 
The levels of IL-6 and Gly were measured by            

ELISA according to the manufacturer’s instructions 
(i.e. we take out the kit and allow equilibration to 
room temperature, dilute the working fluid and 
standard fluid according to the instructions; 100 μL 
of standard or test samples were added to each            
reaction well, and plates were then incubated at 37 ℃  
for 90 min. The liquid was discarded, dumped and 
dried, and 100 μL of biotin-labelled IL-6 antibody 
working solution was added to each reaction well; 
the plate was then blocked and incubated at 37 ℃  for 
60 min; after discarding the liquid, we shook the              
liquid dry, added 350 μL of wash liquid to each              
reaction well, soaked it for 1-2 min, and shook it dry 
with the wash liquid, which was repeated four times. 
100 μL HRP of labelled streptavidin working solution 
was added to the reaction well, then blocked and                   
incubated for 30 min at 37 ℃ . The plate was               
re-washed five more times and 90 μL of color              
developer was added to the reaction well, incubated 
in the dark at 37 °C for 15 min before adding 50 μL 
termination solution. (OD values were measured at 
450 nm with a BioTek 800 microplate meter). The 
comparison between groups was conducted               
according to the OD values. 

 

Statistics 
Results are presented as mean ± s.d (n = 5).         

Statistical analyses were performed using Prism          
software (GraphPad Software 9). The statistical           
significance (P values) in mean values of two-sample 
comparison was determined with Student’s t-test. A 
value of P < 0.05 was considered statistically                 
significant (*). 

 
 

RESULTS 
 

Effect of abrosia on the level of detection of               
metabolites in rat plasma 
Abrosia for 2 h increased the level of detection of  
IL-6 

Figure 1 shows the relative level of IL-6 in plasma 
of rats 7 days after irradiation. As illustrated in figure 
1A, after abrosia for 2-4 h, the level of IL-6 in             
irradiation groups was higher than those of                   
non-irradiated specimens although there was no  
significant difference between them. While the              
relative contents of IL-6 in both irradiated and               
non-irradiation groups after abrosia for 2 h increase 
in contrast with free diet groups (0 h group). Figure 
1B shows that the level of IL-6 in the unirradiated 
groups (0 Gy) abrosia for 2 h, and in 8-Gy irradiation 
groups after being treated without food for 2-4 h 
tended to increase, compared with those of free diet 
groups, respectively. These results indicate that             
abrosia for short-time (2 h) may slightly activate          
inflammatory factor generation. 

Feeding treatment 
Unirradiated 
control group 

(0 Gy) 

Irradiated     
group 
 (8 Gy) 

Free diet (continuous food and water 
supply) before hemospasia 

A0 A8 

Without food for 2 h, but continuous 
water supply before hemospasia 

B0 B8 

Without food for 4 h, but continuous 
water supply before hemospasia 

C0 C8 

Without food for 8 h, but continuous 
water supply before hemospasia 

D0 D8 

Without food and water for 2 h           
before hemospasia 

E0 E8 

Without food and water for 4 h           
before hemospasia 

F0 F8 

Table 1. Grouping and treatment of rats. 
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Abrosia for 2 h increased the measured level of Gly 
Chromatographic analysis shows the contents of 

nine kinds of amino acids increased including Gly in 
the serum of rats exposed to γ-rays (26). Here, Gly was 
selected as a representative to estimate the effect of 
abrosia on the detection of amino acid metabolites in 
blood samples using the ELISA method. 

Figure 2 shows the Gly levels of plasma in               
irradiation groups increased compared with those of 
non-irradiated groups respectively. Furthermore, the 
abrosia for 2 h in the irradiated group significantly 
increased the level of Gly, compared to the                     
non-irradiated specimens (figures 2A & 2B).                  
However, there was no significant increase when all 
of the abrosia groups were compared with the free 
diet group within the unirradiated groups (figure 2B). 
These results suggest that short-term abrosia may 
increase the level of detection of Gly in rats at 7 d  
after irradiation. 

 

Effect of treatment without food and water on the 
level of detection of metabolites in rat plasma 
Abrosia and water deprivation for 2-4 h increased 
the level of detection of IL-6 

Given that too long a water-deprivation test was 
likely to have an unpredictable influence on the  
physiological states of rats, only three time points 
were set, namely 0, 2 and 4 h. Figure 3 demonstrates 
the effect of treatment without food and water on the 
level of detection of IL-6 in the plasma of rats 7 d  
after irradiation. The levels of IL-6 in irradiation 
groups were higher than those of the non-irradiated 
groups when these rats were deprived for food and 

water for 2-4 h, and there was a significant increase 
between the irradiated and unirradiated groups in 
the 4-h treatment (figure 3A). 
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Figure 1. Effect of abrosia before blood harvesting on the level 
of detection of IL-6 in plasma of rats. (A) Comparison between 

unirradiated and irradiated groups under the condition of 
same feeding treatment. (B) Comparison among different 

abrosia treatments under the same level of irradiation. 

Figure 2. Effect of abrosia before blood harvesting on the level 
of detection of Gly in plasma of rats. (A) Comparison between 

unirradiated and irradiated groups under the same feeding 
treatment. (B) Comparison among different abrosia             
treatments under the same irradiation. * P < 0.05. 

Figure 3. Effect of food and water deprivation before blood 
harvesting on the level of detection of IL-6 in plasma of rats. 
(A) Comparison between unirradiated and irradiated groups 
under the same feeding treatment. (B) Comparison among 

different abrosia and water-deprivation treatments under the 
same irradiation. * P < 0.05. 
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Abrosia and water deprivation for 2 h increased 
the level of detection of Gly 

Figure 4 illustrates the changes in Gly level in the 
plasma of rats after a certain period of abrosia and 
water deprivation before blood harvest. Compared 
with the non-irradiation control groups, the levels of 
Gly in irradiated specimens increased when the rats 
were deprived of food and water for 0 and 2 h.             
Furthermore, there was a significant difference         
between the irradiated and non-irradiated groups 
after being treated without food and water for 2 h 
(figure 4A). Furthermore, the levels of Gly in the 
groups treated without food and water for both 2 and 
4 h were higher than those of groups with a free diet 
either in 0 or 8-Gy irradiation groups (figure 4B); 
however, the level in the unirradiated group was a 
little higher than that in the irradiated group under 
the food and water deprivation for 4 h (figure 4A). 
Thus, this result suggests that food and water               
deprivation for 2 h was of benefit to improving the 
level of detection of serum metabolites. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

DISCUSSION 
 

After being stimulated by irradiation, the              
organism will produce a series of oxidative stress 
reactions, catalyzing the changes of the small             
molecule metabolites accordingly in the bodily fluid 
(27, 28). Moreover, taking the body fluid (blood or 

urine) as a biomarker source has certain advantages 
in finding non-invasive indicators for radiation             
damage (19). Studies relevant in metabolomics indicate 
that various small molecule metabolites, including 
amino acids, lipids and inflammatory factors, are of 
great importance in analysis of radiation biological 
effects (29-31). Although there are parts of previous 
studies for using metabolomics to screen radiation 
dose as the markers, there remains a paucity of            
available radiation biomarkers (15, 16, 32). 

Given that there are usually abrosia requirements 
for taking blood samples from patients in a clinical 
setting, it was supposed that feeding conditions 
would also affect the plasma metabolite levels of the 
experimental animals after irradiation. Therefore, in 
this study, SD rats were under different feeding               
conditions controlled before blood harvest, and then 
the plasma levels of IL-6 and Gly were measured. IL-6, 
produced mainly by lymphocytes, is a multifunctional 
cytokine with a wide range of biological activities and 
plays an important role in the body cytokine network 
(33). Our results showed that IL-6 levels were                   
generally higher in the irradiated group compared to 
the non-irradiated group. After 2 h of abrosia, the  
relative content of IL-6 was increased in both the   
irradiated and non-irradiated groups compared to the 
free-diet group. Thus, abrosia can change the plasma 
IL-6 levels in animals. Moreover, the irradiated group 
presented higher IL-6 levels compared to the                  
non-irradiated group, while there was no statistical 
difference therein. Combined with the water                
deprivation treatment for 2–4 h, it was found that the 
irradiated rats had significantly higher plasma IL-6 
levels than those of the non-irradiated group. 

UV stress was found to impair IL-6 / JAK2 / STAT3 
signaling in cells and activate the inflammatory          
mediators IL-6 and TNF-α, inducing apoptosis (34). 
Dreyfuss et al. found that the placental growth factor, 
IL-6, and TNF-α significantly increase in irradiated 
heart tissue and plasma of mice compared to                
unirradiated controls at second and eighth weeks, 
and decreased near to control levels at four weeks 
post-radiotherapy (35). A study using cell model 
showed that the IL-6 is one of the valid evaluation 
indicators, in which it was higher in the 6-Gy                   
irradiation group than that in the 0-Gy group after 
irradiation (36). Our results showed that the difference 
between irradiated and non-irradiated groups was 
not significant. Combined with the results of Dreyfuss, 
we considered that IL-6 levels may fluctuate, first  
increasing after irradiation, then decreasing at 7 d, 
then increasing again. 

After exploring the inflammatory factors               
represented by IL-6, we turned our attention to Gly. 
As an amino acid-like substance, Gly is also involved 
in  multiple metabolic pathways (37, 38). Radiation 
causes an increase in the number of oxygen radicals 
(39), while Gly can relieve oxidative stress damage                 
by regulating two enzymes, catalase and                   
superoxide dismutase 1 (40, 41). In UM-SCC-74B cells, 

Int. J. Radiat. Res., Vol. 21 No. 1, January 2023 114 

Figure 4. Effect of food and water deprivation before blood 
harvesting on the level of detection of Gly in plasma of rats. 
(A) Comparison between unirradiated and irradiated groups 
under the same feeding treatment. (B) Comparison among 

different abrosia and water-deprivation treatments under the 
same irradiation. * P < 0.05. 
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the major alterations after irradiation were related to 
serine and Gly metabolism, purine metabolism, and 
nicotinic acid and nicotinamide metabolism (42).           
Furthermore, Liu et al. combined gas                               
chromatography/time-of-flight mass spectrometry 
with principal component analysis to evaluate  
changes in serum metabolites levels in rats, and 
found that all nine metabolites (including Gly) could 
serve as potential biomarkers for the diagnosis of 
radiation injury (43). In current experimental results, 
we found that the Gly levels in plasma were elevated 
in the irradiated group compared to the                             
non-irradiated group. Through the comparison of 
different abrosia time treatments with free diet, Gly 
levels were significantly increased in the irradiated 
group subject to abrosia for 2 h, while the difference 
between the unirradiated groups was not statistically 
significant. Thus, it is reasonable to speculate that 
diet may partially mask the effect of irradiation               
stimulation on Gly metabolism in rat plasma.                 
Meanwhile, the same results were obtained in              
abrosia and water deprivation for 2-h treatments, 
and Gly levels were higher in all the groups with 
treatments than in the free diet groups. Therefore, 
abrosia and water deprivation for 2 h may improve 
detection of the levels of serum metabolites. 

In our study, how feeding conditions before blood 
harvesting effect on the level of detection of certain 
metabolites in rat plasma was explored. Compared 
with conventional animal studies which concentrated 
more on the effect of irradiation, we also attach              
importance to the easily-neglected aspect, which may 
provide a new idea for experimental standardization. 
To clarify the effect of feeding conditions on the              
levels of metabolites in rat plasma, a series of             
experiments were conducted. The limitation of our 
study is that we only measured the changes of IL-6 
and Gly in plasma, which constrained our findings 
from being generally applicable to other body fluids 
such as tissue fluid and other plasma metabolites, 
thus further research into various body fluids and 
other types of plasma metabolites is warranted. 

 
 

CONCLUSION 
 

Above all, based on our experimental results, it 
can be concluded that abrosia and water deprivation 
for 2 h before blood harvesting is a better way of  
detecting the level of biomarker in serum of plasma, 
and can really reflect the effect of stress such as              
irradiation on living creatures. 
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