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ABSTRACT

Background: Glioma is the most common type of tumor in the nervous system.
Glioma grading remains challenging despite advancements in diagnostic and
treatment systems. Preoperative classification is essential to determining optimal
treatment and prognosis for gliomas. This study aimed to use magnetic resonance
imaging (MRI) to develop accurate nomogram models for glioma grading. Materials
and Methods: Eighty-three patients who had undergone a glioma biopsy from June
2017 to November 2021 were retrospectively collected. Two multiparametric MRIs
were acquired: T2-weighted and T1l-weighted gadolinium contrast-enhanced of 83
glioma patients from one medical institution. Using the open-source python package
PyRadiomics, 107 radiomics features were identified for each sequence MRI. We
analyzed the probabilities of low-grade gliomas (LGG) and high-grade gliomas (HGG)
using logistic regression and the least absolute shrinkage and selection operator
regression (LASSO). We identified seven features affecting LGG and HGG differentiated
using the lasso algorithm. Next, logistic regression analysis was performed to build a
classification model, and five features were obtained. Nomograms were created to
predict the incidence of HGG and LLG. To evaluate the prediction performance of the
models, receiver operating characteristic (ROC) curves were plotted, and the area
under the curve (AUC), sensitivity, specificity, and accuracy were calculated. Results:
For multivariate logistic regression models, according to the best-selected features
based on MRI images and clinical data, five parameters were independent predictors
of LGG from HGG (P<0.001). The highest prediction performance in terms of AUC,
sensitivity, specificity, and accuracy was 0.97, 89.19%, 91.11%, and 90.24%,
respectively. Conclusion: The radiomics nomogram models created from quantitative
images and clinical data performed well in differentiating LGG from HGG.

INTRODUCTION

It is estimated that 30-40% of all tumors of the
central nervous system (CNS) in humans are gliomas.
Astrocytomas and glioblastomas are the most
prevalent types of gliomas (3.21 per 100,000 and
0.46 per 100,000, respectively) (-9. Following WHO
guidelines, there are four grades of gliomas. The
consensus is that grades II and IIl are low-grade
gliomas (LGGs), while grades IV are high-grade
gliomas (HGGs). Grading determines glioma
prognosis and treatment. Surgical resection is usually
the primary form of postoperative treatment for
LGGs, while chemotherapy and radiotherapy are
commonly used for HGGs (@. Accurate grading of
gliomas is essential to improving patients' prognoses.
There is also a significant association between tumor
grade and postoperative recurrence rates (1-3.5),

Following WHO categorization, a direct biopsy is
the standard procedure for grading tumors. However,
this method has several disadvantages, including the

need for invasive procedures such as surgical
resections or biopsies, sample failures caused by
tumor heterogeneity, and a lengthy histological
examination procedure. Brain tumors near binding
sites can pose a risk during surgery (6-8),

Lambin proposed a high-throughput method for
extracting and analyzing quantitative image features
in 2012. In radiomics, radiological images are
transformed into high-dimensional, mineable data
3.9,

The most popular method for glioma preoperative
diagnosis is an MRI scan. Gliomas may now be
identified and diagnosed more precisely thanks to
recent developments in MRI and multiparametric
imaging (1.

The correlation between MRI multiparametric
morphological features and grading has recently been
studied. Computers collect quantitative data from
images in radiomics. The extracted data can be used
to diagnose, prognostically determine, or predict
treatment response with the conversion of images
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into mineable databases (1.3.9),

Recent research suggests that MRI sequence
imaging can be used to grade gliomas. Patients with
gliomas often undergo MRI scans to determine their
tumor type, grade, treatment response, and
recurrence. Due to the difficulty of repeatedly
assessing intra-tumoral heterogeneity and the
limitations of sampling, histopathological studies of
tumor tissue samples cannot entirely identify
intra-tumoral heterogeneity. In contrast, noninvasive
and regular MRIs could be performed, allowing the
collection of data as the disease progresses and
reducing patients' stress (10-12),

MRI examination also provides valuable
information about the features and appearance of
the tumor. Tlc contrast-enhanced (T1lw) and
T2-weighted (T2w) MRI sequences are the most
commonly used techniques to detect tumors. This
study aimed to develop a convenient and noninvasive
nomogram model method based on logistic regres-
sion and MRI radiomics (T2 weighted (T2w) and T1
weighted contrast-enhanced (T1c)) for preoperative
glioma grading and improving diagnostic accuracy.

MATERIALS AND METHODS

Participants

A retrospective data analysis was performed in
this investigation. The Tarbiat Modares University of
Medical Science Ethics Committee approved the
research procedure. (IRRMODARES.REC.1400.076).

From June 2017 to November 2021, the data of 83
patients from an 860-bed academic, research, and
therapeutic hospital in Tehran, Iran were collected.

Patient records were extracted from a hospital-
based registry database known as PACS. There are
several major sections within the PACS system:
demographic, diagnostic, therapeutic, paraclinical,
history, and information. A patient who had one or
more of the following characteristics was excluded
from the study: patients under the age of 18 years,
patients admitted for reasons other than biopsy,
patients who died during hospitalization, patients
discharged against medical advice, and patients with
incomplete case records.

Data acquisition

Through an extensive literature review in
scientific databases, the most relevant clinical
features were identified. A database registry in
Hazrat-e Rasool-e Akram Hospital, affiliated with the
Iran University of Medical Sciences, was accessed
from the finalized feature set for hospitalized patients
with laboratory-confirmed brain tumors (n = 83).

A total of 83 gliomas with grades II-IV were
studied: 20 with grade 1I, 18 with grade III (Total
LGG;38), and 45 with grade IV (HGG).

Two neurosurgical specialists (SS and AJ)

assessed the data, while a third researcher (DM)
arbitrated any discrepancies in the interpretation
between the two initial reviewers. Age, sex, location,
and tumor diameter were recorded for each patient.

Tumor segmentation and radiomic feature
extraction

Images were collected using a 1.5T MRI scanner at
the MR Research Center (MAGNETOM Avanto,
Siemens Healthineers, Erlangen, Germany). We used
MR sequences consisting of T1C and T2WI. All T2 WI
and T1 C pictures (matrix size: 256 x 256, slice
thickness = 5 mm, and slice interval = 0 mm) were
downloaded to the 3D Slicer from the image
archiving and communication system (PACS). In
these pictures, two radiologists with 10 years of
experience (Reader 1 and 2) manually picked areas of
interest (ROI) around the tumor's margin (1.2), ROIs
were created along the tumor's edges to capture the
complete tumour volume in each slice. Pyradiomics
was used to preprocess pictures and extract their
characteristics. Images were resampled using a voxel
size of (1x1x1) and a bin width of (64). Using
Pyradiomics, radiomic characteristics were retrieved
from ROIs based on their three-dimensional areas of
interest (3D ROIs). In all, 107 characteristics
were retrieved from each sequence (table 1,
supplementary) (1314, Training (70% of data) and
validation (30% of data) were normalised using
Z-scores. The repeatability of each characteristic was
determined using intraobserver and interobserver
intraclass correlation coefficients (ICCs) (13-15). In
order to evaluate intraobserver reliability, two
readers independently segmented pictures twice
each week. ICCs over 0.75 were maintained for
intraobserver and interobserver characteristics.
Seven classes of predictor variables were identified
from the imaging dataset and analyzed (13-17),

Feature selection and radiomic signature
construction

The dimension reduction for the radiomics was
accomplished wusing the Spearman correlation
analysis and the least absolute shrinkage and
selection operator (LASSO) approach. The Spearman
correlation coefficient was set to 0.9 to decrease
feature redundancy, and the LASSO approach was
adopted for feature selection, with penalty parameter
tuning carried out using 10-fold cross-validation
(39,18).

Radiomic signatures (Rad-scores) were
constructed using a logistic regression model. The
Rad-score is defined as the nonzero coefficient of the
selected features. Using the weighted characteristics
of each feature, a Rad-score was calculated for each
patient(21819), Data was randomly divided into
training and testing groups (n=58 and 25
respectively). Radiomics models were built using the
training data.
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By measuring the area under the receiver
operator characteristic curve (AUC), it was possible
to determine the predictability of a radiomic
signature.

Table 1. seven categories of predictor variables extracted
from the imaged dataset.

Feature

groups Feature type

Elongation, Flatness, LeastAxisLength, MajorAx-
isLength, Maximum2DDiameterColumn, Maxi-
Shape mum2DDiameterRow, Maximum2DDiame-

features terSlice, Maximum3DDiameter, MeshVolume,

MinorAxisLength Sphericity, SurfaceArea, Sur-

faceVolumeRatio, VoxelVolume

10Percentile, 90Percentile, Energy, Entropy, In-

terquartileRange, Kurtosis, Maximum, Mean-

First-order | AbsoluteDeviation, Mean, Median, Minimum,

statistics Range, RobustMeanAbsoluteDeviation, Root-

MeanSquared, Skewness, TotalEnergy, Uniformi-
ty, Variance

DependenceEntropy, DependenceNonUniformity,
DependenceNonUniformityNormalized, Depend-
enceVariance, GrayLevelNonUniformity, GrayLev-
Gray-level | elVariance, HighGrayLevelEmphasis, LargeDe-
dependence pendenceEmphasis, LargeDepend-
matrix enceHighGraylLevelEmphasis, LargeDepend-
(GLDM) | enceLowGrayLevelEmphasis, LowGrayLevelEm-
phasis, SmallDependenceEmphasis, SmallDe-
pendenceHighGrayLevelEmphasis, SmallDepend-
enceLowGrayLevelEmphasis

GrayLevelNonUniformi-

ity ,GrayLevelNonUniformityNormalized ,GrayLeve
IVariance ,HighGrayLevelRunEmphasis ,LongRunE
Gray-level |mphasis ,LongRunHighGrayLevelEmphasis ,LongR
run length |unLowGraylLevelEmphasis ,LowGrayLevelRunEmp

matrix hasis ,RunEntropy

(GLRLM) |,RunLengthNonUniformity ,RunLengthNonUnifor
mityNormalized ,RunPercentage ,RunVariance ,Sh
ortRunEmphasis ,ShortRunHighGrayLevelEmphasi

s ,ShortRunLowGrayLevelEmphasis

Autocorrelation, ClusterProminence, Cluster-
Shade, ClusterTendency, Contrast, Correlation,
DifferenceAverage, DifferenceEntropy, Differ-

Gray-level enceVariance, Inverse diference (ID), Inverse
co- diference moment (IDM), Inverse diference mo-
occurrence | ment normalized (IDMN), Inverse diference nor-
matrix malized (IDN), Informal measure of correlation

(GLCM) |(IMC) 1, Informal measure of correlation (IMC) 2,
InverseVariance, JointAverage, JointEnergy,
JointEntropy, MCC, MaximumProbability, SumAv-
erage, SumEntropy, SumSquares

GrayLevelNonUniformity, GrayLevelNonUniformi-
tyNormalized, GrayLevelVariance, HighGrayLevel-
ZoneEmphasis, LargeAreaEmphasis, LargeArea-
Gray-level | HighGrayLevelEmphasis, LargeAreaLowGraylLev-
size-zone | elEmphasis, LowGraylLevelZoneEmphasis, Size-
matrix ZoneNonUniformity, SizeZoneNonUniformi-
(GLSZM) | tyNormalized, SmallAreaEmphasis, SmallArea-
HighGrayLevelEmphasis, SmallAreaLowGrayLev-
elEmphasis, ZoneEntropy, ZonePercentage, Zone-

Variance
Neighboring
gray tone Busyness, Coarseness, Complexity, Contrast,
diference Strength
matrix
(NGTDM)

Radiomic nomogram construction

We constructed a diagnostic model using a
multivariable logistic regression analysis based on
the training data. The nomogram's performance was

evaluated based on calibration and ROC curves 511,12,
20-22),

Statistical analysis

SPSS 22 (SPSS Inc., Chicago, Illinois, USA) and
Stata 16.0 (Stata Corp., College Station, Texas, USA)
were utilized to analyze the quantitative data. A
Kolmogorov-Smirnov test was applied to assess the
distribution of variables. A Student's t-test was
employed to determine whether the unique features
of LGG and HGG significantly differed for normally
distributed features; otherwise, Mann-Whitney
U-tests were performed. The significance level was
set to p < 0.05. Variables that showed statistical
significance in the univariate analysis were used in
the multivariate analysis to predict effectiveness. All
relevant predictors were included in the construction
of the nomogram. Stata was used to create the
nomogram and calibration graphs.

RESULTS

Demographic and clinical findings to differentiated
HGG and LGG

In 83 individuals (LGG: 38, HGG: 45), gliomas
were evaluated in PACS and histopathologically
verified. The training and testing cohorts were
randomly selected. Table 2 summarizes the
important demographic and clinical features of
differentiated HGG and LGG.

Table 2. Differentiated HGG and LGG based on demographic
and clinical features of patients.

College LGG HGG P -value
Patients 38 45
Age (mean +SD) 41+16 54+12 <0.01
Gender
Male 26 24 0.44
Female 14 16
Location (N)
Frontal lobe 22 21
Parietal lobe 16 14 0.68
Temporal lobe 1 2
Other locations 1 3
Tumors Diameter
(mean + SD) 4.6%1.8 5.4+1.6 0.03

Radiomic score and radiomic model construction
We used the scikit-learn linear Lasso model
with iterative fitting along a regularization path
(LassoCV) to determine the optimal value of alpha.
The most appropriate model was selected using cross
-validation.
A total of 107 radiomic features were extracted using
the 3D Slicer. The LASSO dimension reduction and
Spearman correlation analysis preserved only seven
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radiomic features. The importance of the seven
features calculated by LASSO and the exact
coefficient values are shown in figure 1 (a, b, and c).
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Figure 1. LASSO feature selection to separate LGG from HGG;
LASSO regression was used to screen variables.

a. The coefficient profiles of the 107 characteristics
were mapped to alpha. Observing the plot from left
to right, we can see that the lasso models initially
include a significant number of predictors with big
coefficient estimates. As alpha grows, the
coefficient will decrease. It is essential to
remember that if alpha = 0, the lasso provides the
least squares fit. If alpha is exceptionally big, the

lasso yields a null model in which all coefficient
estimates are 0.

b. To prevent overfitting and simplify the model, the
smallest error was chosen and seven variables
were maintained based on their location along the
dashed line.

c. Seven variables were retained when the error was
the least, based on the collected data.

Construction of the predictive nomogram

Five features were selected after the multivariable
logistic regression analysis. A nomogram was created
based on the findings of the multivariate analysis and
the regression modeling strategies in Stata. The
nomogram included important radiomic features
(figure 2). The following is an example of a patient
with a brain mass who scored 6.5 to 7, with a chance
of GBM greater than 0.9.

Nomogram
160 2870
090 T30
JointE riropy D —
%0 nr
Elongation
040 or 106 129 m 204 a7 2T
Oeferencedves; e a—
1200 040
[} 1 2 3 4 5 [3 7 8 ] woon
Scom
Prob LRRRY]
e 1 2 3 4 &5 6 7 B @ W M 12 13 4 15 16
Total score

Figure 2. Nomogram result for prediction of probably HGG
based on the crucial radiomic features.

Based on best-selected features based on MRI
images and clinical data, the highest prediction
performance with an AUC, sensitivity, specificity, and
accuracy was obtained 0.97, 89.19%, 91.11%, and
90.24%, respectively. Roc curves is shown in figure 3.

g4
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Figure 3. The predictive performance of the radiomic features
and clinical data for distinguishing HGG and LGG.

For discriminating LGG from HGG, the radiomics
variables provided remarkable predictive
performance. For each patient in the training and
testing cohorts, the calibration plot (figure 4)
demonstrated considerable variation between the
LGG and HGG.


http://dx.doi.org/10.52547/ijrr.21.2.14
https://mail.ijrr.com/article-1-4740-en.html

[ Downloaded from mail.ijrr.com on 2025-11-02 ]

[ DOI: 10.52547/ijrr.21.2.14]

Bijari et al. / Determining the low and high-grade glioma base on MRI images 279

0 2 A 8 8 1
Prodicted Grading

Figure 4. Calibration plot of nomogram for grading HGG and
LGG( Ideal: --- ----- ).

DISCUSSION

To form a radiomic model for glioma grading, 107
characteristics were selected for each sequence. A
nomogram model was used to enhance the HGG and
LGG differentiation. Imaging and clinical radiomics
are required to develop a prediction model. It is
common for gliomas to have an abundant blood
supply as high signals demonstrated in T1-W and
T2-W sequences. This led us to draw an area of
interest in these two sequences. Based on prior
research ,to choose stable features, two physicians
should perform the segmentation.

We generated seven radiomic features using the
T1-C and T2-W. The features were highly predictive
of preoperative LGG and HGG. On standard MR
images, multiple signals and degrees of enhancement
may be visible due to tumor heterogeneity. It is
common for glioma signals to be confused due to
intratumoral hemorrhage occurring throughout the
tumor. Glioma imaging features still allow for
identifying tumor enhancement with high accuracy.
For the preoperative grading of glioma, MRI
radiomics can provide additional information
regarding the heterogeneity of the different levels of
the tumor. It is also difficult to recognize with the
naked eye different gray levels in glioma tumors
because of their heterogeneity (23-25),

In most cases, MRI is used for preoperative
diagnosis of gliomas. However, standard MRIs are
often only useful for localizing tumors and evaluating
them qualitatively without significantly impacting
glioma grading (26-28), However, MRI still has a limited
role in preoperative grading. An increasing number
of disorders are being assessed using radiomic
techniques. Some researchers have applied them to
different types tumors. Several studies have used
similar techniques to grade gliomas (29-32). Based on
735 images, Rathore's study revealed that the grades
of gliomas differed (accuracy = 0.751, AUC = 0.652).
The current study used software programs to
perform a high-throughput and multidimensional
texture extraction. Compared to previous models, the
proposed model performs better (accuracy =0.84,

AUC = 0.970), demonstrating its reliability. Cao et al.
3. discovered that the location of gliomas
components in the brain might discriminate between
benign and malignant gliomas. The model's AUC in
the training set was 0.997, but it was 0.90 in the
external test set; their study was limited to
morphological characteristics. Although the model
performed well, the image coregistration technique
must be accurate, which may restrict the model's
clinical use. Takahashi et al. (4. identified GBM and
LGG using a machine-learning algorithm based on
kurtosis and energy features on diffusion imaging.
The AUC in the complete model achieved 0.98 in the
external test set. However, the sample was too small,
with just 55 instances. In comparison, we only
employed the T2 -w MRI and T1 weighted
contrast-enhanced (T1 -w +C MRI) sequences, which
may have more universal applications since
high-quality diffusion tensor imaging pictures may be
difficult to obtain in community hospitals.

Moreover, a biopsy is crucial to determining the
difference between HGG and LGG. The presented
model is generalizable compared to previous
research. Tumors, necrotic components, and edema
zones are difficult to differentiate and segment. We
segmented necrosis and edema regions which might
make clinical use more viable in the future.

There are a few limitations to our research. First,
experienced professionals validated the ROI of the
images drawn semiautomatically. Second, the sample
size was small; hence, a prospective investigation
with a larger sample size is warranted. Additional
research with a larger sample and validation cohorts
is required to confirm our findings. Finally, the
prediction model developed in this study was not
externally validated, and external data should be
acquired for this purpose.

CONCLUSION

The results suggest that based on the T1-C and T2
-W sequences, these radiomic models can be used as
tools to differentiate LGG from HGG. According to the
results of this study, radiomic nomogram models can
be considered a tool to help differentiate LGG from
HGG. This is more useful in patients at risk of an inva-
sive biopsy.
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