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A modified deep learning model in the classification of post-
COVID-19 lung disease and a comparative study on Iranian 

and international databases 

INTRODUCTION 

The first cases of coronavirus disease 2019 
(COVID-19) were observed in China in December 
2019. COVID-19 rapidly spread worldwide and             
affected the healthcare systems of international               
communities (1). The main manifestation of COVID-19 
is a severe viral infection that affects the respiratory 
system (2). The lungs are the main organ affected by 
this acute viral infection. Based on pulmonary      

symptoms and the risk of severe complications,             
including death, patients often require admission to 
the intensive care unit (ICU). Prevention of infection 
and disease through vaccination and early diagnosis 
remains crucial (3). Although reverse-transcription 
polymerase chain reaction (RT-PCR) is the preferred 
test for COVID-19 (4), several studies have shown that 
chest computed tomography (CT) has a higher               
sensitivity of approximately 97% for COVID-19 than 
RT-PCR (5). The competitive advantage and superior 
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ABSTRACT 

Background: We introduced Mask R-CNN+CNN as a deep learning model to classify 
COVID-19 and non-COVID-19 cases. Radiomic features relevant to COVID-19 was 
presented for Iranian and other nationalities. Materials and Methods: Chest CT 
images from 800 COVID-19 positive and negative patients were studied. The 
automated volume of the lung and segmentation of COVID-19 lung lesions were 
implemented using 3D U-net, Capsule network, and Mask R-CNN on annotated CT 
images. Deep learning models designed were based on Mask R-CNN, CNN, and Mask R
-CNN+CNN algorithms to classify COVID-19 cases. We also explored radiomic features 
relevant to the COVID-19 pandemic in the lungs for chest CT images and implemented 
random forest (RF), decision tree (DT), and gradient boosting decision tree (GBDT) 
algorithms on two datasets. Results: The Mask R-CNN+CNN model demonstrated a 
higher classification accuracy (96.39 ± 2.94) compared to the Mask R-CNN and CNN 
models. The RF algorithm had greater power in differentiating relevant COVID-19 
radiomic features compared to DT and GBDT, with an accuracy of at least 91 and an 
AUC of at least 985 in both datasets. We identified six radiomic features that were 
relevant to the pathological characteristics of COVID-19 positive/negative patients and 
were common across all datasets. Conclusion: This study emphasizes the power of 
Mask R-CNN+CNN with a ResNet-101 backbone as a CNN algorithm that utilizes 
bounding box offsets output from Mask R-CNN as the input for classifying COVID-19 
cases. Radiomic features extracted from lung CT images might aid the diagnosis of 
COVID-19 in patients at various stages of the disease. 
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performance of CT lie in its potential as a more              
powerful tool for management and decision-making 
regarding ICU treatment, as well as follow-up care for 
cases with ambiguous findings on chest X-rays (CXR) 
or positive RT-PCR test results (6-9) , (8-10). Chest CT 
commonly reveals ground glass opacities (GGO), 
mixed GGOs, lung consolidation, crazy-paving               
patterns, bronchial dilation, peripheral distribution, 
interlobular septal thickening, and bilateral              
involvement (11-13) (6, 14). However, as the use of CT 
scan imaging increases, limitations are being               
observed in diagnosing lung lesions and                           
differentiating types of pneumonia, depending on the 
conditions of the imaging system (15, 16). Moreover, 
some radiologists may not be experts in detecting 
infected regions (17). Consequently, it can be            
time-saving to have an automated tool to distinguish 
suspected areas in CT images. Numerous studies have 
been conducted on the use of artificial intelligence 
(AI) in medical diagnosis, and significant advances 
have been made in classifying images by                         
convolutional neural networks (CNNs) (18). 

Machine learning (ML) is a branch of artificial  
intelligence and computer science aiming to model 
complex relationships or patterns based on empirical 
data (19). Machine learning algorithms (MLAs) have 
demonstrated their good performance in situations 
involving the prediction of categories from spatially 
dispersed training data. They are particularly            
advantageous when a high-dimensional input space 
represents a complex investigative process. Given 
that chest CT is the most widely used diagnostic            
imaging modality for COVID-19, this study believes 
that medical image analysis utilizing artificial neural 
networks and ML techniques could be utilized to aid 
the early detection or identification of high-risk            
individuals (20).  

In the current body of research, deep learning and 
ML approaches are widely employed to detect and 
segment regions of infected pneumonia, to reduce 
misdiagnosis and predict coronavirus infections 
based on medical image modalities (7, 20-23). These  
approaches can assist radiologists in enhancing their 
performance and making better decisions in                 
managing the disease. In this regard, the support  
vector machine (SVM), gradient boosting machine 
(GBM), and random forest (RF) are the most             
frequently utilized machine learning methods (24). 

Extracting precise information from medical             
images is a fundamental principle of radiomics     
modeling that leads to an accurate decision-making 
process in the diagnosis and treatment of diseases (25-

28). 
Medical images contain a wealth of information, 

and identifying their commonalities and divergences 
can help reduce uncertainties. This could lead to 
more targeted studies on both ML and deep learning. 
To obtain more accurate results, data should be           
gathered from various studies in different               

communities to develop a comprehensive                      
understanding of the pathogenesis pathways and 
treatment approaches. The reproducibility and               
consistency of radiomic features across multinational 
conditions and different images could contribute to 
the optimal use of medical imaging features in the 
diagnosis, prediction, and validation of modeling in 
all fields of research (30).  

This study utilized international and Iranian              
datasets for COVID-19 classification to determine the 
most common radiomic features associated with the 
disease. A key objective was to propose a network 
that could be applied to different nationalities and CT 
scanners with varying protocols. Additionally, this 
study aimed to develop an intelligent model based on 
deep learning by collecting an extensive database of 
lung CT scan images and to examine its                       
generalizability in classifying COVID-19 patients. We 
also assessed and compared the lung CT radiomic 
features associated with COVID-19 classification in 
both international and Iranian databases using ML 
algorithms. We hope to create an intelligent model 
based on the deep learning approach by compiling a 
large database of lung CT scan images and verifying 
its applicability for the classification of COVID-19  
patients 

 
 

MATERIALS AND METHODS 
 

This research was conducted in two steps. In the 
first step, two experienced and expert radiologists 
manually labeled each chest CT scan image as normal 
or abnormal for COVID-19 in International and              
Iranian datasets. The two radiologists were blinded 
to the patients' CT results. Additionally, they                   
manually segmented the lung area and pulmonary 
lesions following COVID-19 from CT scans in the           
datasets. We used these segmentations to train the 
networks (as shown in figure 1). Three deep learning 
networks, namely Mask R-CNN (region-based                
convolution neural network), 3D U-Net, and Capsule 
network (Caps Net) were utilized to automatically 
segment lungs from CT scan images. 
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Figure 1. Normal and abnormal lung samples from 3 patients, 
the middle images show the normal lung and the left and right 
images show the involved lung. The yellow color in this figure 

shows the healthy areas, and the green color shows the  
affected areas.  
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After segmenting the lung area in all the samples, 
we classified them into normal or abnormal cases 
using three scenarios of Mask R-CNN, CNN, and Mask 
R-CNN+CNN algorithms. Mask R-CNN+CNN is a CNN 
algorithm that uses bonding box offsets output from 
Mask R-CNN as the input for class labeling. The              
automated bounding box generated by Mask R-CNN 
is based on what the radiologists annotated around 
the lung area in normal and abnormal samples. All 
three scenarios were implemented on three well-
known architectures: dense convolutional networks 
(DenseNet-116), residual neural network (ResNet-
50), and ResNet-101. Finally, we compared these 
three scenarios and presented the best model based 
on the evaluation results. The overall framework of 
our proposed technique is shown in figure 2. 

Mask R-CNN is a deep neural network designed to 
address sample segmentation problems in machine 
learning, enabling the separation of different objects 
in an image. It provides object bounding boxes,               
classes, and masks when given an image. Mask R-CNN 
can be used in both training and testing phases.               
During the test phase, predicted boxes, masks, and 
class assurances are generated using the ground 
truth data (class labels, box coordinates, and masks) 
from the training phase. In this study, we used Mask 
R-CNN to determine the bounding box of standard 
and abnormal sample lungs as input for the Mask           
R-CNN+CNN algorithm for class labeling (figure 3). 

ResNet is the most widely used backbone for               
object detection and segmentation tasks (29).                  
ResNet-101 is a convolutional neural network           
consisting of 101 deep layers, designed to aid in data 
classification. ResNet-50, which is a variant of the 
ResNet model trained on the ImageNet dataset,             
includes 48 convolution layers, one max pool layer, 
and one average pool layer. It has a total of 3.8 ×109 
floating point operations. 

DenseNet, which uses dense connections between 
layers, is similar to ResNet but with some significant 
differences. In DenseNet, the output of each layer is 
combined with the outputs of all preceding layers, 
whereas in ResNet, the output of each layer is added 
to the outputs of subsequent layers. This means that 
DenseNet creates a more direct path for gradient flow 
during training, which can help mitigate the                
vanishing gradient problem that can occur in very 
deep neural networks. 

Radiomic features were extracted from the entire 
segmented lung volume in both COVID and non-
COVID subjects. The extracted features were tagged 
as normal (non-COVID) or abnormal (COVID) in two 
separate groups, one international and one Iranian. 
Feature selection was performed using three                  
techniques: select percentile, K-Best, and general  
univariate. Then, three classifiers, namely decision 
tree (DT), gradient boosting decision trees (GBDT), 
and random forest (RF), were used to determine           
feature importance. Finally, we compared the              
essential features of COVID-19 in both international 
and Iranian groups, and identified relevant common 
elements in the two datasets. 

To the best of our knowledge, this is the first 
study to utilize machine learning models to compare 
the importance of COVID-19 features in both                  
international and Iranian datasets, setting a                
precedent for future research in this domain. 

 

Datasets  
Our study analyzed 800 chest CT images,                   

consisting of 200 scans from Iranian adult COVID-19 
patients aged 18-80 years (113 females and 87 
males), 200 scans from international (Italian,                
Chinese, Korean, and American) adult COVID-19             
patients, and 400 healthy chest CT scans from both 
Iranian and non-Iranian individuals who were not 
infected with COVID-19. 

The demographic information of Iranian patients 
is presented in Table 1. Prior to chest CT imaging, all 
COVID-19 positive patients had laboratory                      
confirmation of their infection. This study focused on 
patients who experienced pulmonary complications 
following COVID-19, such as pneumonia, pleural            
effusion, bronchiectasis, dyspnea, chronic cough, and 
pulmonary fibrosis. The patients were examined          
approximately 2-3 weeks after PCR confirmation of 
their COVID-19 positivity. International data were 
collected from January 2020 to 2021 in many          
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Figure 2. A detailed block diagram of the study in classification 
of COVID-19 lung disease and effective features extraction. 

Abbreviations: 3D U-net: three-dimensional U-shaped network 
architecture. CapsNet: Capsule network. Mask R-CNN: Mask 

region-based convolution neural network. CNN: Convolutional 
neural network. Mask RCNN+CNN is a CNN algorithm that 

uses bonding box offsets output from Mask-R CNN as input for 
class labeling. 

Figure 3. A detailed block diagram of the Mask R-CNN for 
COVID-19 image segmentation. Abbreviations: Mask R-CNN: 

Mask region-based convolution neural network.                        
Resnet:  Residual neural network. CNN: Convolutional neural 

network.  
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datasets such as: 
http://medicalsegmentation.com/COVID19/  
https://github.com/ThisIsIsaac/Data-Science-for-
COVID-19  
https://github.com/CSSEGISandData/COVID-19  
https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/6ACUZJ 
https://www.kaggle.com/paultimothymooney/chest
-xray 
https://github.com/UCSD-AI4H/COVID-CT  
https://github.com/CSSEGISandData/COVID-19 

Iranian chest CT images were obtained using           
either a conventional spiral CT scanner (Neusoft            
CT-C3000, Neusoft Medical Systems, China) or a              
Siemens 16-slice CT scanner (SOMATOM Sensation 
16, Siemens Healthcare, Germany). 

High-resolution CT imaging was performed on 
Iranian patients using the following parameters: 120 
kV; 80-100 mA; pitch = 0.8-1.3 mm; slice thickness = 
5-10 mm; matrix size 512 x 512; field of view 400 
mm. The scans were obtained during the inspiration 
phase with patients in a supine position,                        
approximately 2-3 weeks after PCR confirmation of 
COVID-19 positivity. 

 

Pre-processing 
In the pre-processing step, extraneous and               

irrelevant information was removed, resulting in 
more suitable images for the segmentation process. 
In this study, pre-processing steps were applied             
before deep neural network implementation to           
enhance the quality of chest CT images. The sequence 
of pre-processing steps included denoising,                 
interpolation, and normalization to improve training 
data quality for deep learning algorithms. The                
denoising technique was utilized to minimize noise in 
images obtained from various scanners while          
preserving diagnostic image details and minimizing 
feature loss. Subsequently, all images were 
resampled to a 1 × 1 × 1 size, followed by the                
application of Wavelet Decomposition (WAV) and 
Laplacian of Gaussian (LOG) filters. The LOG filter 
served to enhance image edges, with different sigma 
values being tested in three sizes, ranging from 0.5 to 
5 pixels in increments of 0.5. 

For noise removal, we employed the                       
wavelet-based denoising technique. This method  
offers additional benefits, including ease of                   
computation and full automation, as well as            

applicability to various image processing tasks such 
as edge smoothing, detail enhancement, and                
compression. 

In the normalization step, all pixel values were 
scaled to a range of 0 to 1. Subsequently, the dataset 
was divided into three groups: 60% for training, 20% 
for validation, and 20% for testing. To improve                 
performance and minimize over fitting, data              
augmentation techniques were employed during 
training. Specifically, we applied random                    
counter-clockwise rotations to lung images ranging 
from 10 to 359 degrees, and additional techniques 
such as zooming, and vertical and horizontal               
translocation. The augmented data were then used to 
train and validate the initial Mask R-CNN, 3D U-Net, 
and Caps Net architectures to learn lung and COVID-
19 lesion volumes. The study was implemented on an 
NVIDIA GeForce RTX3080 GPU, running Python 
3.8.10 and Torch 1.9.0+cu111. 

 

Network architectures 
Three frameworks; 3D-U-Net, Mask R-CNN, and 

Caps Net were used on international and Iranian            
cases for automated lung area segmentation. The goal 
of this segmentation was to identify COVID-19 lung 
lesions and segment them from the surrounding lung 
tissue. Caps Net is a technique inspired by the concept 
of 3D rendering in computer graphics and aims to 
encode image entities more intelligently. A published 
study experimentally showed the significance of using 
Caps Net on medical images compared to CNNs; Caps 
Net demonstrated its potential for improving                  
performance in medical image analysis (30).  

The Mask R-CNN architecture is composed of two 
primary components: Faster R-CNN and a parallel 
branch to predict per-pixel object class probabilities. 
We used the ResNet-101 backbone in the Faster                 
R-CNN network to generate the feature maps passed 
to the region proposal network (RPN) and create a set 
of proposed regions that may contain lung lesions. 
Anchors corresponding to each area of interest are 
then passed through feature maps, generating masks 
that outline COVID-19 lung lesions on the input               
image. The task of COVID-19 lung lesion segmentation 
is formulated as a binary classification problem             
between the image background and lung lesions. The 
final output is a predicted mask corresponding to the 
input image, which can be overlaid on the input image 
for clinical use. To forecast the position (bounding 
box coordinates) of each item and localize each object 
separately from the others, Mask R-CNN employs the 
RPN block. As a result, for each designated item, the 
three attributes, i.e., bounding box, class, and mask 
are present (31). 

 

Radiomics approach 
During this phase, we extracted 867 radiomic             

features from the automatically segmented whole 
lung volume of the international and Iranian datasets 
using 3D Slicer software (www.slicer.org). To classify 
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Patients Age Number Positive Negative Female Male 
18_19 18 11 7 7 11 
20-30 52 25 27 30 22 
31-40 47 28 19 21 26 
41-50 62 27 35 29 33 
51-60 67 29 38 39 28 
61-70 77 36 41 39 38 
71-80 77 44 33 46 31 
Total 400 200 200 211 189 

Table 1. Iranian demographic data of all different age groups. 
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COVID-19 patients using decision tree (DT), gradient-
boosted decision tree (GBDT), and random forest 
(RF) machine learning classification algorithms, we 
applied three techniques, i.e., percentile selection,              
K-Best, and general univariate feature selection to 
select relevant features. This process helped reduce 
the number of optimal and efficient invisible features 
in developing models for diagnosing COVID-19               
complications in the early stages of the disease which 
may be beyond human perception. 

 

Evaluation metrics and equations 
The evaluation metrics and quantitative analysis 

used in this study were as follows: 
True positive (TP): The outcome where the model 

correctly predicts the positive class, meaning the 
sample is positive and the model predicted it as              
positive. 

False negative (FN): The outcome where the  
model predicts the negative class, meaning the      
sample is positive but the model predicted it as           
negative. 

False positive (FP): The outcome where the model 
predicts the positive class, meaning the sample is 
negative but the model predicted it as positive. 

True negative (TN): The outcome where the              
model correctly predicts the negative class, meaning 
the sample is negative and the model predicted it as 
negative (Equations 1 to 6). 

 

           (1) 
 

            (2) 
 

               (3) 
  

 

                 (4) 
 

    (5) 
 
    (6) 
 

 
 

RESULTS  
 

Tables 2 and 3 display the quantitative accuracy 
of automated segmentation of lungs and pneumonia 
lesions from chest CT images. It is evident that the 3D 
U-Net algorithm outperforms other methods in              
segmenting lungs and lesions. To determine the            
normality or abnormality of the images, three           
algorithms, i.e., Mask R-CNN, CNN, and Mask                        
R-CNN+CNN were employed on DenseNet-161,               
ResNet-50, and ResNet-101 backbones. The ResNet-
101 backbone yielded the most accurate results, 
achieving an accuracy of 82% for Mask R-CNN and 

89% for Mask R-CNN+CNN (tables 4 and 5). 
Table 6 presents the results of assessing the          

classification algorithms Mask R-CNN, CNN, and Mask 
R-CNN+CNN based on four metrics: accuracy,                
sensitivity, specificity, and area under the receiver 
operating characteristic (AUC) curve. The most               
effective algorithm in accurately classifying COVID-
19 cases was Mask R-CNN+CNN, which achieved an 
accuracy of 96.39%. 

 
The optimal subsets of radiomic features were 

ranked using three tree-based algorithms: DT, GBDT, 
and RF. The comparison results of ML models using 
four evaluation metrics (accuracy, sensitivity,                
specificity, and AUC) are presented in table 7. RF  
outperformed the other models in finding relevant 
features for COVID-19, achieving an accuracy of 91% 
for international and 92% for Iranian patients. 

Table 8 illustrates the importance of relevant 
common features in both international and Iranian 
datasets for COVID-19 classification. 
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Table 5. Comparison between the different backbones               
performance of Mask R-CNN+CNN. 

Backbone 
Accuracy 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
AUC-ROC 

(%) 
ResNet-50 81.90±5.83 77.67±11.66 96.24±7.43 88.90±8.99 

ResNet-101 84.14±2.77 82.53±4.99 86.78±3.99 89.44±12.6 
DenseNet-161 79.17±9.40 71.35±6.30 98.06±4.41 87.08±4.23 

Table 4. Comparison between the three backbones                 
performance of Mask R-CNN. 

Lung Segmentation 
Methods 

Dice Coefficient Hausdorff distance 

CapsNet 92.32 ± 0.93 0.96 ± 0.14 
3D U-Net 93.66 ± 1.91 0.95 ± 0.74 

Mask R-CNN 91.85 ± 2.34 0.87 ± 0.52 

Table 2. The result of lung segmentation with CapsNet, 3D          
U-Net and Mask-RCNN. 

Lesion Segmentation 
Methods 

Dice Coefficient Hausdorff distance 

3D U-Net 84.38 ± 3.89 0.90 ± 0.12 
Mask R-CNN 81.03 ± 5.35 0.89 ± 0.24 

Table 3. The result of Covid-19 lung lesion segmentation with 
3D U-Net and Mask R-CNN. 

Backbone 
Accuracy 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
AUC-ROC 

(%) 
ResNet-50 87.7 8±5.35 79.90±7.04 95.38±4.67 90.6±6.35 

ResNet-101 89.15±3.11 85.94±6.75 89.30±2.90 92.5±7.48 
DenseNet-161 87.9±2.81 76.60±5.43 97.85±4.75 88.44±3.92 

Method 
Accura 
Cy (%) 

Sensitivety 
(%) 

Specificity 
(%) 

AUC-ROC 
(%) 

Mask R-CNN 94.12±3.55 82.50±2.05 86.70±1.25 89.44±0.95 
CNN 93.66±4.25 93.66±1.80 89.66±0.75 93.16±4.25 

Mask R-N+CNN 96.39±2.94 85.90±2.25 89.31±3.15 92.24±0.10 

Table 6. Quantitative evaluation of Covid-19 classification with 
Mask R-CNN, CNN and Mask R-CNN + CNN. 
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DISCUSSION 
 

The main focus of this paper was to showcase 
COVID-19 diagnosis systems that utilize CNN               
methods (figure 1). The results indicated the                
effectiveness of COVID-19 classification by deep 
learning algorithms such as Mask R-CNN, CNN, and 
Mask R-CNN+CNN with ResNeSt-50, ResNet-101, and 
DenseNet-161 as their backbones. Additionally, this 
study evaluated the efficacy of selecting relevant  
features for COVID-19 using three ML classifiers, 
namely DT, GBDT, and RF. Iranian and international 
datasets identified standard radiomic features of 
lungs which are associated with the classification of 
COVID-19 (table 2). 

Predicting diseases such as COVID-19 can help 
control epidemic outbreaks and decrease economic 
costs. One of the most effective tools for                       
discriminating between normal and abnormal cases 
and classifying the disease is the relevant features 
extracted from the region of interest. Previous               
studies have primarily utilized machine learning  
classification algorithms, data mining, and logistic 
regression methods to predict COVID-19. These  
studies often predicted the incidence of COVID-19 
based on epidemiological data and related concepts 
(32-34). The current study focused on CT scan images 
and investigated radiomic features that may be             
associated with the COVID-19 pandemic in different 
nationalities. 

Several literature reviews have compared                 
different neural networks to determine the best one 
for COVID-19 classification based on accuracy and 
sensitivity. Based on the results, networks with            
ResNet, DenseNet, and ResNeXt as dense feature           
extractors have demonstrated the highest accuracy 
among several datasets (35-37). 

In this study, similar to previous findings, a             
deeper ResNet-101 backbone outperformed               
competitors such as ResNet-50 as a backbone (36, 
38). Furthermore, ResNet-101 demonstrated            
superior results compared to DenseNet-161,                  
validating that it is more suitable as a backbone     

network for COVID-19 detection (tables 5 and 6). The 
primary difference between DenseNet and ResNet 
lies in how they collect features. While ResNet          
collects features from shallower layers through           
summation, DenseNet achieves this through            
concatenation. ResNet introduces short connections 
to neural networks, which reduces the vanishing  
gradient problem and allows for much deeper          
network structures. Additionally, during feature           
extraction, short connections enable different           
combinations of convolution operators, creating 
many equivalent feature scales (39). Consequently, 
less critical marginal features are eliminated, and the 
network examines fewer features, resulting in more 
accurate classification. 

This study demonstrates that the Mask                           
R-CNN+CNN model can achieve a higher accuracy 
rate (96.4%) for COVID-19 classification. A reason 
why this framework performs better with deeper 
layers is that the classification model is established 
based on the bounding box determined from Mask            
R-CNN (table 6). Similarly, Podder et al. discovered 
that Mask R-CNN outperforms all other methods,  
delivering a specificity of 97.36% and an accuracy of 
96.98%. Therefore, it can be considered an effective 
tool in healthcare (40). In addition, it has been noted 
that the Mask R-CNN technique shows promise in 
identifying diseases related to the chest. Ter-Sarkisov 
successfully trained a model that could quickly and 
easily adjust to new chest CT scan data, resulting in 
high sensitivity in diagnosing COVID-19 (41). Ramesh 
et al. (31) compared the performance of Mask R-CNN 
to Tang, Sun, and Li's U-Net segmentation                    
architecture (42). The researchers discovered that 
Mask R-CNN outperformed U-Net, which was largely 
due to its distinctive structure. Unlike U-Net's          
contracting and expansive paths, Mask R-CNN              
employed recurring feature maps and included an 
RPN, which contributed to its superior performance. 
Additionally, the use of ResNet-101 as the backbone 
instead of ResNet-18 led to the deletion of less             
important features and examination of fewer             
features, resulting in improved accuracy of model 
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Algorithms AUC–ROC (%) Accuracy (%) Sensitivity (%) Specificity (%) Mean cross validation (%) 
Nationality International Iranian International Iranian International Iranian International Iranian International Iranian 

RF 98.35±5.01 98.87±2.99 91.03±3.59 92.30±5.83 98.44±3.88 85.73±2/09 85.70±2.99 89.63±2.00 60.11±4.88 92.07±1.78 
DT 94.06±4.80 84.09±1.96 83.7 5±5.11 84.53±3.21 97.58±1.98 80.20±4.92 60.17±5.33 85.16±1.68 62.55±4.31 92.09±2.99 

GBDT 74.46±0.79 66.00±2.88 80.93±1.17 76.94±3.44 83.37±2.54 42.69±2.88 91.88±5.16 61.82±2.44 78.69±6.35 88.04±1.88 

Table 7. The area under curve (AUC), accuracy, sensitivity, specificity for different classifiers used in two datasets. 

  Common radiomic features in both Iranian and International datasets 

Features Feature Classes 
Importance for 
Iranian dataset 

Importance for 
International dataset 

Difference Variance Gray-Level Co-occurrence Matrix Features 0.474548 0.03125 
Contrast Gray-Level Co-occurrence Matrix 0.375885 0.02 

Gray Level NonUniformity Gray-Level Size-Zone Matrix Features 0.313935 0.02 
Dependence NonUniformity Normalized Gray-Level Dependence Matrix Features 0.279239 0.020833 

Large Area LowGray Level Emphasis Gray-Level Size-Zone Matrix Features 0.279239 0.01227 
JointEntropy Gray-Level Co-occurrence Matrix Features 0.02 0.01 

Table 8. The most common importance radiomic features that contributed to Covid-19 classifying in International and Iranian         
datasets. 
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classification (36). 
 A study by Chen et al. describes the use of Mask R

-CNN to extract lung outlines and lesion sites from CT 
images for COVID-19 detection (43). The model 
demonstrated high sensitivity and specificity for           
detecting COVID-19. In comparison, in the present 
study, the model of the Mask R-CNN+CNN was             
improved with a ResNet-101 backbone that achieved 
even higher accuracy than the original Mask R-CNN 
and CNN models. Note that deep learning models 
often require fine-tuning and optimization to achieve 
the best possible performance, and it seems that the 
authors of the present paper achieved better results 
by making improvements to their model architecture. 
Haque et al. created a CNN model that successfully 
detected COVID-19 from chest X-ray pictures with an 
accuracy of 97.56% (44). The proposed model with 
four convolutional layers performed better than 
models trained with three and five convolutional  
layers, achieving an accuracy of 99.1%, while keeping 
computational complexity to a minimum. Gunraj et al. 
(45) created COVID Net-CT, a deep convolutional             
neural network designed to identify COVID-19 from 
CT images. They employed an automated design             
exploration method to determine the optimal            
architecture for deep CNN. With an accuracy of 
94.99%, this model was found to be superior to all 
others. However, SVM and naive Bayes models were 
discovered to be the most sensitive and specific  
models, with ratings of 93.34% and 94.30%,                
respectively, among all the other models.                 
Furthermore, CovXNet, a deep learning model that 
employs depth-wise convolution to efficiently extract 
features from chest X-ray images, was developed by 
Mahmud et al. To recognize COVID-19 from a limited 
dataset, pre-trained convolutional layers were           
adjusted and directly implemented in the model. This 
method achieved an accuracy of 97.4% for binary 
classification and 90.02% for multi-class categories, 
which is the highest reported accuracy (33, 46). 

Wang (47) developed a deep learning model named 
COVID Net that correctly distinguished between            
conventional, non-COVID, and COVID-19 groups with 
an accuracy of 92.4%. Kundu et al. (48) presented their 
approach, COVID-SEGNET, which employs Mask              
R-CNN to detect ground glass opacities (GGOs) in 
chest CT scans of affected individuals. This technique 
is automated, does not need manual intervention, 
and achieves a high accuracy rate of 98.25% for           
classification and instance segmentation. In another 
investigation, Zheng et al. (48) proposed the use of a 
deep learning segmentation based on 3D U-Net to 
diagnose COVID-19 pulmonary infection. The use of 
this network presents great potential for diagnosing 
COVID-19, which is in line with our findings.               
Moreover, multi-class segmentation of lung and 
COVID-19 lung lesions has been found to be more 
effective using 3D U-Net, as indicated by other results 
(49, 50). Nevertheless, identifying pneumonia lesions in 

CT scans can be difficult as they significantly vary in 
appearance, size, shape, and location within the lung 
region, which is the primary challenge of 3D COVID-
19 segmentation (51). 

 The Convolutional Caps Net is an artificial neural 
network based on capsule networks, which was              
developed to identify COVID-19 from chest X-ray  
images using fewer layers. Similar to our experiment, 
this technique presents excellent performance for 
binary classification with a success rate of over 96% 
(97.24%); for multi-class categorization, it achieves a 
rate of 84.22% (52). These results confirm that capsule 
networks are effective in classification, even with 
limited data sets. Toraman et al. employed a different 
approach than CNN architectures by utilizing only 
four convolution layers, which is fewer in number, in 
addition to the primary capsule layer for detecting 
COVID-19 from CXR images (49). Capsule networks 
can also achieve favorable outcomes with several 
convolution layers, whereas CNN structures demand 
a higher number of layers.  

Based on the aforementioned studies, extensive 
studies have created deep learning models that can 
effectively diagnose or classify the incidence of            
diseases, policies, and management of the spreading 
outbreak of coronavirus. However, due to the              
insignificance of the results obtained from these 
studies, pioneering research that requires less               
training time and higher computational power can be 
a viable strategy for developing future deep learning 
abnormality diagnosing methods, such as for COVID-
19. 

Although imaging has played an essential role in 
detecting and predicting diseases, medical images 
alone do not provide all the necessary information 
about patients with COVID-19. Therefore, intelligent 
imaging platforms that employ laboratory                  
examination results, medical records, and clinical 
manifestations combined with imaging data can            
significantly improve detection and forecasting            
accuracy. 

The performance evaluation of the three ML  
models conducted in this study revealed that the RF 
classifier had a greater ability to differentiate COVID-
19 from normal cases compared to DT and GBDT, 
with an accuracy of ≥91% and an AUC of ≥0.985 
(table 7). 

Random Forest (RF) builds multiple decision 
trees and merges their predictions to obtain a more 
accurate and stable forecast, rather than relying on 
individual trees (50).  

Muhammad et al. (47) evaluated the efficacy of  
machine learning models in predicting COVID-19              
infection using epidemiological data. Their results 
showed that the decision tree model had the highest 
accuracy rate of 94.99%, while the support vector 
machine model and Naï ve Bayes model had the           
highest sensitivity (93.34%) and specificity 
(94.30%), respectively. In the present study, the RF 
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algorithm had a greater ability than DT to                   
differentiate relevant COVID-19 radiomic features 
(table 6). In another study by Chen et al. (2020) (43), 
clinical and imaging features of COVID-19 were              
summarized as image changes, such as GGO,                    
consolidation, air bronchi sign, paving stone sign, 
fibrous lesions, vascular thickening, and halo sign 
observed during CT scan examination. Furthermore, 
Shamout et al. have proposed a deep neural network 
for extracting features from informative areas of CXR 
images and a gradient-boosting model for learning 
from routine non-imaging clinical variables. These 
assist clinicians in predicting COVID-19 deterioration 
for patients in the emergency departments, with an 
AUC of 0.786. Their findings revealed that most CXRs 
do not exhibit airspace opacities. For these patients, 
non-respiratory complications, such as                       
cardiovascular or neurological side effects may             
trigger further deterioration of COVID-19 (51). In Tang 
et al.'s study which employed quantitative features 
extracted from chest CT images, among the 30              
quantitative traits examined, the volume of ground 
glass opacity regions (with a Hounsfield Unit range of 
-700 to -300) and their ratios with respect to the    
entire lung volume were found to be the most                
significant contributors to the severity of COVID-19 
(52). In the present study, three classifiers, namely 
decision tree (DT), gradient boosting decision trees 
(GBDT), and random forest (RF), were utilized to  
determine the importance of CT image features in 
COVID-19 classification. 

To detect and forecast COVID-19 outcomes,               
several trials have employed radiomics. For example, 
Cai et al. (2020) (9) demonstrated that CT radiomic 
characteristics were crucial to determining when         
RT-PCR would turn negative in COVID-19 patients. In 
their prediction model, there were 10 parameters, of 
which nine were CT radiomic characteristics. The five 
most critical radiomic features were original                 
first-order minimum, original GLDM small                   
dependence, original first-order maximum, original 
first-order 10 percentile, and low gray level               
emphasis. Large area high gray-level emphasis and 
original shape sphericity were also essential. Fu et al. 
(53) used radiomics and ML to predict the progression 
of initially stable COVID-19 infections. According to 
Wu et al. (2021) (54), CT texture characteristics could 
differentiate severe COVID-19 patients from those 
with other acute respiratory infections. 

All CT images utilized in this study were obtained 
using different scanners and imaging protocols, and 
from patients at various stages of COVID-19 infection. 
Despite this variation, the results showed that six 
radiomic features (table 8), including difference             
variance, contrast, gray level non-uniformity,              
dependence non-uniformity normalized, large area, 
low gray level emphasis, and joint entropy were             
consistently identified as important discriminators of 
COVID-19 positive and negative patients in both    

international and Iranian subjects. These six radiomic 
features, which are primarily gray texture features, 
were found to be closely associated with the                 
pathological characteristics of COVID-19 infection 
and demonstrated strong diagnostic performance 
across different nationalities and imaging centers, 
despite variations in COVID-19 stages. 

COVID-19 presents numerous challenges,               
including changes in lung lesions over time, volume 
involvement of the lung, and CT involvement severity 
score. Machine learning approaches can assist in  
determining the initial stages of lung involvement 
and the volume of lung affected. These tasks will be 
among our priorities going forward in medical             
diagnosis and decision-making. As demonstrated by 
similar studies, no computer-based detection system 
can claim 100% accuracy. To increase reliability, it is 
recommended that further laboratory examination 
results and clinical manifestations be combined with 
image data when developing clinical models. 

 

 

CONCLUSION 
 

The combination of Mask R-CNN and CNN with a 
ResNet-101 backbone achieved higher accuracy in 
classifying COVID-19 compared to CNN and Mask              
R-CNN alone. These results underscore the                    
significance of common radiomic features in global 
databases, which provide excellent diagnostic value 
for COVID-19 classification. The study also suggests 
that a more extensive database is needed to enhance 
the robustness of the radiomic features and improve 
their influence on outputs. 
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