[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 2 (4-2024) ::
Int J Radiat Res 2024, 22(2): 251-256 Back to browse issues page
Gene expression in luminal A breast cancer and its correlation with chemoradiotherapy outcome and recurrence
J. Ma , T. Gan , A. Song
Department of General Surgery, the Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China , songail@lzu.edu.cn
Abstract:   (1189 Views)
Background: Breast cancer is a common cancer that affects women. The Luminal A subtype of breast cancer is defined by low Ki67 expression (<14%), Her-2 negative, and positive ER and PR. Luminal A exhibits a favorable prognosis compared to other breast cancer types. Materials and Methods: Gene expression profiling was employed in this investigation to discover genes linked to clinical efficacy and recurrence in Luminal A breast cancer tissue samples. The study's overarching goal was to discover new therapeutic targets by deciphering the molecular mechanisms behind Luminal A breast cancer. Results: Our analysis revealed specific genes linked to Luminal A breast cancer, and their expression levels were correlated with clinical outcomes. High expression of certain genes was associated with improved clinical efficacy and a reduced recurrence rate. Conclusion: The study provides valuable insights into the molecular mechanisms of Luminal A breast cancer, offering potential targets for personalized therapeutic approaches.
Keywords: Breast neoplasms, luminal a subtype, gene expression, clinical efficacy, recurrence.
Full-Text [PDF 987 kb]   (232 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Stashko C, Hayward MK, Northey JJ, et al. (2023) A convolutional neural network STIFMap reveals associations between stromal stiffness and EMT in breast cancer. Nat Commun, 14(1): 3561. [DOI:10.1038/s41467-023-39085-1]
2. Sanderson K (2023) Huge leap in breast cancer survival rate. Nature, 2023. [DOI:10.1038/d41586-023-02075-w]
3. Yang Y, He Y, Fan Z, et al. (2023) Phase III study of HR-positive/HER2-negative/lymph node-positive breast cancer non-responsive to primary chemotherapy: a randomized trial. NPJ Breast Cancer, 9(1): 54. [DOI:10.1038/s41523-023-00553-y]
4. Zhang L, Mosquera I, Lucas E, et al. (2023) CanScreen5, a global repository for breast, cervical and colorectal cancer screening programs. Nat Med, 29(5): 1135-45. [DOI:10.1038/s41591-023-02315-6]
5. Sato G, Shirai Y, Namba S, et al. (2023) Pan-cancer and cross-population genome-wide association studies dissect shared genetic backgrounds underlying carcinogenesis. Nat Commun, 14(1): 3671. [DOI:10.1038/s41467-023-39136-7]
6. Zhang J, Hu Z, Chung HH, et al. (2023) Dependency of NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis. Nat Commun, 14(1): 2439. [DOI:10.1038/s41467-023-38132-1]
7. Sanchez-Vega F, Mina M, Armenia J, et al. (2018) Oncogenic signaling pathways in the cancer genome atlas. Cell, 173(2): 321-37.e10. [DOI:10.1016/j.cell.2018.03.035]
8. Lee JJ, Jung YL, Cheong TC, et al. (2023) ERα-associated translocations underlie oncogene amplifications in breast cancer. Nature, 618(7967): 1024-32. [DOI:10.1038/s41586-023-06057-w]
9. Nolan E, Lindeman GJ, Visvader JE (2023) Deciphering breast cancer: from biology to the clinic. Cell, 186(8): 1708-28. [DOI:10.1016/j.cell.2023.01.040]
10. Krug K, Jaehnig EJ, Satpathy S, et al. (2020) Proteogenomic landscape of breast cancer tumorigenesis and targeted therapy. Cell, 183(5):1436-56.e31. [DOI:10.1016/j.cell.2020.10.036]
11. Abubakar M, Figueroa J, Ali HR, et al. (2019) Combined quantitative measures of ER, PR, HER2, and KI67 provide more prognostic information than categorical combinations in luminal breast cancer. Mod Pathol, 32(9):1244-56. [DOI:10.1038/s41379-019-0270-4]
12. Kataoka M (2022) The Contribution of Imaging as a Prognostic Marker of Luminal Breast Cancer. Radiology, 304(2): 320-1. [DOI:10.1148/radiol.220748]
13. Wu Q, Tian P, He D, et al. (2023) SCUBE2 mediates bone metastasis of luminal breast cancer by modulating immune-suppressive osteoblastic niches. Cell Res, 33(6): 464-78. [DOI:10.1038/s41422-023-00810-6]
14. Kim I, Choi S, Kim S (2018) BRCA-Pathway: a structural integration and visualization system of TCGA breast cancer data on KEGG pathways. BMC Bioinformatics, 19(1): 42. [DOI:10.1186/s12859-018-2016-6]
15. Huang Y, Chen L, Tang Z, et al. (2021) A novel immune and stroma related prognostic marker for invasive breast cancer in tumor microenvironment: A TCGA based study. Front Endocrinol (Lausanne), 12: 774244. [DOI:10.3389/fendo.2021.774244]
16. Gao C, Zhuang J, Zhou C, et al. (2019) SNP mutation-related genes in breast cancer for monitoring and prognosis of patients: A study based on the TCGA database. Cancer Med, 8(5):2 303-12. [DOI:10.1002/cam4.2065]
17. Serrano-López EM, Coronado-Parra T, Marín-Vicente C, et al. (2022) Deciphering the Role and signaling pathways of PKCα in luminalA breast cancer cells. Int J Mol Sci, 23(22). [DOI:10.3390/ijms232214023]
18. Chen YH, Zhang TF, Liu YY, et al. (2022) Identification of a 5-gene-risk score model for predicting luminal A-invasive lobular breast cancer survival. Genetica, 150(5): 299-316. [DOI:10.1007/s10709-022-00157-7]
19. Guo Q, Qiu P, Yao Q, et al. (2022) Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in androgen receptor-positive TNBC. Dis Markers, 2022: 4964793. [DOI:10.1155/2022/4964793]
20. Ahn S, Kwon A, Huh YH, et al. (2022) Tumor-derived miR-130b-3p induces cancer-associated fibroblast activation by targeting SPIN90 in luminal A breast cancer. Oncogenesis, 11(1): 47. [DOI:10.1038/s41389-022-00422-6]
21. Zhang Y, Wu H, Yu Z, et al. (2022) Germline variants profiling of BRCA1 and BRCA2 in Chinese Hakka breast and ovarian cancer patients. BMC Cancer, 22(1): 842. [DOI:10.1186/s12885-022-09943-0]
22. Hakkaart C, Pearson JF, Marquart L, et al. (2022) Copy number variants as modifiers of breast cancer risk for BRCA1/BRCA2 pathogenic variant carriers. Commun Biol, 5(1): 1061. [DOI:10.1038/s42003-022-03978-6]
23. Matta BP, Gomes R, Mattos D, et al. (2022) Familial history and prevalence of BRCA1, BRCA2 and TP53 pathogenic variants in HBOC Brazilian patients from a public healthcare service. Sci Rep, 12(1): 18629. [DOI:10.1038/s41598-022-23012-3]
24. Katheeja MN, Das SP, Das R, Laha S (2023) BRCA1 interactors, RAD50 and BRIP1, as prognostic markers for triple-negative breast cancer severity. Front Genet, 14: 1035052. [DOI:10.3389/fgene.2023.1035052]
25. Sanz-Moreno A, Palomeras S, Pedersen K, et al. (2021) RANK signaling increases after anti-HER2 therapy contributing to the emergence of resistance in HER2-positive breast cancer. Breast Cancer Res, 23(1): 42. [DOI:10.1186/s13058-021-01390-2]
26. Kast K, John EM, Hopper JL, et al. (2023) Associations of height, body mass index, and weight gain with breast cancer risk in carriers of a pathogenic variant in BRCA1 or BRCA2: the BRCA1 and BRCA2 Cohort Consortium. Breast Cancer Res, 25(1): 72. [DOI:10.1186/s13058-023-01673-w]
27. Ashekyan O, Abdallah S, Shoukari AA, et al. (2022) Spotlight on Exosomal Non-Coding RNAs in Breast Cancer: An In Silico Analysis to Identify Potential lncRNA/circRNA-miRNA-Target Axis. Int J Mol Sci, 23(15). [DOI:10.3390/ijms23158351]
28. Subramanian A, Tamayo P, Mootha VK, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA, 102(43):15545-50. [DOI:10.1073/pnas.0506580102]
29. Dennis G, Jr., Sherman BT, Hosack DA, et al. (2003) DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol, 4(5): P3. [DOI:10.1186/gb-2003-4-5-p3]
30. Rey-Vargas L, Bejarano-Rivera LM, Mejia-Henao JC, et al. (2022) Association of genetic ancestry with HER2, GRB7 AND estrogen receptor expression among Colombian women with breast cancer. Front Oncol, 12: 989761. [DOI:10.3389/fonc.2022.989761]
31. Asif K, Memeo L, Palazzolo S, Frión-Herrera Y, et al. (2021)STARD3: A prospective target for cancer therapy. Cancers (Basel), 2021: 13(18). [DOI:10.3390/cancers13184693]
32. Wang B, Wu L, Chen J, et al. (2021) Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct Target Ther, 6(1): 94. [DOI:10.1038/s41392-020-00443-w]
33. Yao X, Li W, Fang D, et al. (2021) Emerging roles of energy metabolism in ferroptosis regulation of tumor cells. Adv Sci (Weinh), 8(22): e2100997. [DOI:10.1002/advs.202100997]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ma J, Gan T, Song A. Gene expression in luminal A breast cancer and its correlation with chemoradiotherapy outcome and recurrence. Int J Radiat Res 2024; 22 (2) :251-256
URL: http://ijrr.com/article-1-5361-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 2 (4-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4660