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Spectral CT based radiomics for predicting brain metastases 
in patients with lung cancer 

INTRODUCTION 

One of the most aggressive cancers, lung cancer, 
affects people all over the world (1). According to            
estimates, it will continue to be the top cause of             
cancer death in 2020, accounting for 11.4% of the 
19.3 million new cancer cases (2). Brain metastases 
(BrMs) in lung cancer patients are common,                 
particularly those with non-small cell lung cancer
(NSCLC), nearly 50% of cases had BrMs (3). BrMs are 
linked to marked morbidity and high mortality (4-5). It 
is worth mentioning that according to previous             
studies, early local therapies or therapies combined 
with systemic treatment may offer better intracranial 
progression-free survival (3). However, the methods 
for predicting the occurrence of BrMs are rarely              
reported and not always accurate. 

Spectral computed tomography (CT) can obtain 
information from a virtual plain scan image, material 
separation image, single energy spectrum image,  
effective atomic number image, and energy spectrum 
curve. Spectral CT has a lot of applications in lung 
cancer. Using energy spectrum data, benign and            
cancerous lung lesions can be identified, mediastinal 
lymph node metastasis can be detected before             
surgery, lung cancer can be classified and staged, the 
epidermal growth factor receptor (EGFR) status of 

NSCLC can be anticipated, and lung cancer                    
angiogenesis and prognosis can be assessed (6-10). It 
also helps to determine whether pure ground-glass 
nodules are invasive (11). 

Radiomics was first proposed by Dutch                  
researchers Lambin et al. (12). Radiomics refers to a 
high throughput extraction of many features from 
images, resulting in diagnosis, prognosis, and              
prediction models. Radiomics can be applied in           
various biomedical fields. It is widely used in               
oncology, especially in advanced cancer, having the 
potential for individualized tumor treatment (13).             
According to a study, for patients with locally           
advanced non-small cell lung cancer (LA-NSCLC) who 
had undergone curative surgery, the integrated            
nomogram may be the best tool for predicting               
BrMs-free survival when paired with the clinical and 
CT radiomics features (14). However, studies on         
spectral CT image-based lung cancer radiomics are 
rare.  

In this study, the authors attempt to create and 
evaluate a prediction model by combining                  
pre-treatment spectral CT radiomics features of             
primary lung cancer with quantitative parameters of 
energy spectrum. This model may provide a new 
method for the early detection of BrMs in lung cancer 
patients. 
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ABSTRACT 

Background: The goal of this study was to create a prediction model for brain 
metastasis (BrMs) in patients with lung cancer using unenhanced spectral computed 
tomography (CT) and radiomics. Materials and Methods: This study comprised 162 
patients with lung cancer who underwent spectral CT from 2019–2021. Patients were 
split into training and test sets and into BrMs and BrMs-free groups. Spectral and 
radiomics parameters were obtained from the spectral CT images before pathological 
confirmation. Prediction models in the training and test sets were created using 
logistic regression. The receiver operating characteristic curve was used to evaluate 
each quantitative parameter for predicting BrMs. The diagnostic effectiveness of 
several parameters was analyzed and compared using the area under the curve (AUC) 
calculation. The final model was obtained using the Delong test. Results: There were 
statistically significant differences in the iodine concentrations and the slope of the 
energy spectrum attenuation curve of the two groups <(p0.05). The AUC of the 
combined radiomics model was greater than that of the 70 keV and 120 keV sequence 
models. The joint parameters of radiomics and spectral CT constructed an integrated 
model. In the training set, test set, and overall set, the AUCs of the integrated model 
were 0.875, 0.879, and 0.724, respectively. In the training and overall sets, the 
prediction performance of the integrated model outperformed the spectral and 
radiomics models (p<0.05). Conclusions: This integrated model may predict the BrMs 
in lung cancer patients. 
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MATERIALS AND METHODS  
 

Patient population 
The study received an exemption from ethical 

review by the Institutional Review Board of Shanghai 
Traditional Chinese Medicine-Integrated Hospital, as 
this was a retrospective study. The principles of the 
Helsinki Declaration are adhered to in this               
research. We evaluated 162 lung cancer cases            
diagnosed pathologically at our facility between              
January 2019 and April 2021. Lung cancer 
(pathological results were obtained by operation or 
puncture) and having had spectral CT scanning         
before treatment were the inclusion criteria.             
Following were the exclusion criteria: nodules with a 
diameter less than 5 mm (N = 16); poor spectral            
image quality or image data error, which could not 
satisfy further analysis (N = 15); absence of follow-up 
data (N = 49). A 4:1 ratio was used to randomly split 
these included lung cancer patients into training and 
test sets. 

 

Follow-up status 
BrMs, the primary measurement outcome of this 

research, were defined as the time interval between 
the dates of spectral CT scanning (before pathological 
diagnosis) and the BrMs, or the last date patients 
were known to be BrMs-free. The follow-up period 
came to an end in June 2021. Patients were followed 
up every 3 to 6 months, or following the medical       
advice. The occurrence of BrMs was mainly                    
determined by craniocerebral CT or magnetic                 
resonance imaging (MRI) scanning (including ours 
and another institution). The patient's medical            
records provided the information above and the 
baseline clinical data. Part of the information was 
obtained by telephone follow-up. 

 

Technical specifications for acquiring spectral CT 
images 

The gemstone spectral CT (General Electric            
Company, Revolution 256CT, USA) was used to scan 
the chest. The patients were asked to perform routine 
respiratory training in the supine posture before the 
scan. The upper boundary of the scanning range was 
thyroid cartilage, and the lower boundary was the 
costophrenic angle. The mediastinal window images 
were transmitted to the GE Advantage Workstation 
4.7(GE Healthcare, USA). Image analysis was done 
with the built-in gemstone spectral imaging (GSI) 
viewer software package. The following were the  
dual-energy CT scanning parameters: “A” tube            
voltage is 70 kVp, “B” tube voltage is 120 kVp, the 
tube current is 365 mA, the automatic milliampere 
technology switches instantaneously to 0.5 ms, the 
layer thickness and spacing are both set to 5 mm, the 
pitch is 0.984, and the collimator is set to 64*0.625. 
The gemstone spectral CT scanning utilizes the             
characteristics of different substances with varying 

348 

attenuation coefficients under different ray energies 
for imaging. Usually, substances with different levels 
of attenuation are chosen to form a base material 
pair. Water and iodine are commonly used                     
combinations because they encompass a range of 
common substances in human medicine. 

 

Acquisition of image quantitative parameters 
Without knowing the pathology, two radiologists 

collected the quantitative parameters independently 
at the General Electric Company Advantage                
Workstation 4.7 (GE Healthcare, USA). These                
radiologists had more than 10 years of experience. 
When there were differences among the results, a 
consensus was reached through negotiation. The GSI 
viewer software can automatically generate the             
iodine and water-based substance separation images. 
By outlining the region of interest (ROI), this                  
software can automatically calculate its water               
concentration (WC) and iodine concentration (IC). 
GSI viewer software can also automatically calculate 
CT values of all single energy images and form an 
energy spectrum attenuation curve for each ROI. The 
Greek alphabet letter λ represented the slope of the 
energy spectrum attenuation curve. The λ of the               
target lesion was calculated using the equation 

(λHU): λHU=(CT40keV-CT90keV)/50. The ROI setting 

area was 30 mm2, and the propagation was set to all 
volumes to ensure consistency. The ROI was placed in 
the largest slice of the target lesion and in the           
uniform tissue composition. All ROI were measured 

thrice, and the average value was taken (figure 1). 
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Figure 1. In the post-processing, radiologist drew the ROI in 
the iodine and water-based substance separation image and 

obtained the spectral curve, WC, and, IC. a: Spectral Curve; b: 
Water (Iodine) image; c: Iodine (Water) image. 

a 
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Radiomics feature extraction and analysis  
The ROI was randomly drawn by two experienced 

radiologists on the largest lesion level in two                
dimensions. Subsequently, radiomics features were 
extracted using radiomics software (Beijing Yizhun  

AI Technology Company, CHN).One imaging                 

technologist with more than 3-year working              
experience reconstructed 70 keV and 120 keV                
sequences through standardized post-processing 
software. The reconstructed layer thickness and layer 
spacing were 0.625 mm, and the DICOM data were 
imported into the scientific research platform. Before 
delineating the ROI, we set a unified standard. The 
ROI must be delineated along the tumor's margin 
while avoiding large blood vessels, bronchi, and          
calcification as much as possible (figure 2). Based on 
each patient's unenhanced spectral CT images, 1878 
features were recovered, comprising 939 features of 
the 70 keV and 120 keV sequences, respectively. The 
main categories of feature were: first order statistics; 
shape based; gray level cooccurrence matrix; gray 
level run length matrix; gray level size zone matrix; 
neighboring gray tone difference matrix of original, 
and wavelet-based features. Three models were              
constructed, including 70 keV sequence, 120 keV  
sequence, and combined sequence. The first-
dimension reduction of each model was performed 
by a statistical method, and then the second-
dimension reduction was carried out using the             
logistic regression method.  

Statistical validation  
All quantitative data were analyzed by the SPSS 

22.0 software package (IBMCorp., Armonk, N.Y., 
USA)) and the MedCalc Statistical Software version 
19.3.1 (MedCalc Software Ltd, Ostend, Belgium). The 
measurement data were all mean ± Standard                 
deviation representation. A chi-square test was used 
to compare the count data between the training and 
test sets. The independent two-sample T-test was 
used to examine the quantitative parameters,              
including age, IC, WC, and λHU. The difference was 
statistically significant (P<0.05). The most valuable 
features from the quantitative spectral parameters 
and radiomics features in the training set were             
selected using the logistic regression model. These 
parameters were used to construct the models,               
including the spectral, radiomics, and integrated 
model. From the 70 keV and 120 keV sequences, the 
radiomics model was chosen. Each patient's                

rad-score was calculated using a linear combination 
of selected features. Furthermore, these selected              
features were weighted by their respective                     
coefficients. The effectiveness of the rad-score for 
predicting BrMs for the training set, test set, and 
overall set was assessed using ROC. The AUC was  
calculated to analyze and compare the effectiveness 
of various parameters as diagnostic indicators. The 
final model was obtained using the Delong test, and 
the best model was verified in 5-fold cross-
certification. 

 
 

RESULTS 
 

The flowchart of the study is presented in figure 3. 
 

 
 

Patients and follow-up 
Table 1 displays the characteristics of the studied 

groups. Among the lung cancer patients, the median 
age was 65.1 years. Approximately 65.4% were male, 
and the BrMs group had a greater percentage of both 
males and older age than the BrMs-free group                   
did (p<0.05). Table 2 summarizes the clinical                       
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a b 

Figure 2. Radiologists drew the ROI on the largest lesion level 
in two dimensions in 70 keV and 120 keV sequences. ROI was 
outlined along the edge of the tumor. a: 70 keV sequences; b: 

120 keV sequences. 

Figure 3. Flowchart of this study. The inclusion criteria: 1. Lung 
cancer (pathological results were obtained by operation or 

puncture); 2. Underwent spectral CT scanning before                 
treatment. The exclusion criteria: 1. Ground-glass nodules 

with a small volume (N = 16); 2. Poor spectral image quality or 
image data error that could not satisfy further analysis (N = 

15); 3. Lack of follow-up information (N = 49). 
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characteristics and spectral parameters in the                
training and test sets. Age, sex, IC, WC, and HU did 
not differ significantly (p>0.05). In the overall              
cohorts, the follow-up duration was 12.62±9.21 
months. Among these patients, BrMs occurred in 25 
patients (15.4%), with the median BrMs duration 
2.92±4.64 months. Approximately 76% of BrMs            
occurred in 1 month, 80% occurred in 3 months, and 
88% occurred in 6 months. 

Spectral parameters selection  
According to the follow-up results, 162 patients 

were separated into BrMs and BrMs-free groups.  
Statistics showed a significant difference in the             
values of λHU and IC between the two groups 
(p<0.05). Lung cancer patients in the BrMs group had 
higher HU and IC values than in the BrMs-free group. 
Nevertheless, between the two groups, there was no 
significant difference in the value of WC (table 3). The 
WC value had no distinguishing value for these two 
groups. 

Construction and evaluation of radiomics models 
based on spectral CT images 

By dimensionality reduction, these three models 
(70 keV, 120 keV, and the combined sequence model) 
obtained 20, 19, and 21 features respectively. After 
calculating each rad-score, the AUC of 70 keV         
sequence model were 0.637 for the training set and 
0.621 for the test set, the AUC of 120 keV sequence 
model were 0.766 and 0.764, while the AUC of               
combined sequence model were 0.793 and 0.771. 
Other indexes, including precision, sensitivity, and 
specificity are listed in table 4. The AUC and precision 
of combined sequence model were similar with 70 
keV sequence model but slightly higher than 120 keV 
sequence model in the training set. As we expected, 
in the test set, the AUC of combined sequence model 

were similar with 70 keV sequence model but slightly 
higher than 120 keV sequence model. Meanwhile, the 
precision of combined sequence model was higher 
than 70 keV and 120 keV sequence models in the test 
set. These results indicated the trend that the               
prediction efficiency of combined model was more 
effective than that of 70 keV and 120 keV sequence 
models (figure 4). In addition, in the test set, 120 keV 
sequence model had high sensitivity but poor              
specificity, while the sensitivity and specificity of 
combined model performed well. Therefore,                   
combined model was considered the best radiomics 
model. After dimensional reduction by logistic                
regression analysis, twenty potential predictors were 
left (figure 5).  
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group T/Χ２ 

VALUE 
P 

VALUE BrMs group (25) BrMs-(free137) 

Sex 
male 11 95 

6.003 0.014 
female 14 42 

Age   60.96±9.17 65.85±8.81 -2.538 0.012 

Table 1. General information. 

  
TRAINING SET 

(N=129) 
TEST SET 
(N=33) 

T/Χ２ 
VALUE 

P 
VALUE 

AGE 64.67±9.12 66.79±8.52 -1.208 0.229 
SEX (MALE/

FEMALE) 
89/40 23/10 0.006 0.938 

IC 5.46±3.06 5.30±3.04 0.259 0.796 
WC 1018.92±80.46 1026.02±9.40 -0.504 0.615 

L VALUE 0.74±0.42 0.72±0.41 0.248 0.804 

Table 2. Spectral characteristics of patients of lung cancer in 
the training set and test set. 

Table 3. Spectral parameters in the BrMs group and BrMs-free 
group. 

  BRMS GROUP 
BRMS-FREE 

GROUP 
T 

VALUE 
P 

VALUE 
WC 1027.95±10.31 1018.98±78.05 0.572 0.568 
IC 6.79±2.81 5.18±3.04 2.475 0.014 

L VALUE 0.92±0.39 0.70±0.41 2.490 0.014 

Figure 4. a: ROC of 70 keV sequence model, 120 keV sequence 
model, combined model (70 keV sequence + 120 keV                

sequence) in training set; b: ROC of 70 keV sequence model, 
120 keV sequence model, combined model in test set. 

Figure 5. The After dimensional reduction by logistic                
regression analysis, twenty potential predictors were left. The 

value of log (alpha) while choosing the ideal number of           
features is shown by the dashed line. α=-0.315. 

  
AUC(P value, 

95% CI) 
Precision Sensitivity Specificity 

Training set         
70 keV 

sequence 
0.637(0.0248, 
0.547–0.720) 

0.54 95.0 32.0 

120 keV 
sequence 

0.766(<0.0001, 
0.683–0.836) 

0.65 70.0 68.8 

70+120 keV 
sequence 

0.793(<0.0001, 
0.706–0.854) 

0.67 65.0 78.9 

Test set         
70 keV 

Sequence 
0.621(0.2189, 
0.436–0.784) 

0.55 100.0 42.9 

120 keV 
sequence 

0.764(0.0153, 
0.585–0.894) 

0.61 100.0 50.0 

70+120 keV 
sequence 

0.771(0.0117, 
0.593–0.899) 

0.70 80.0 67.9 

Table 4. Prediction performance of 70 keV sequence, 120 keV 
sequence and combined models in training set and test set. 
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Performance evaluation and validation of S, R, and 
S+R models  

The S, R, and S+R represent the radiomics model, 
spectral model and integrated model, respectively. In 
the training and test sets, the AUC of the S model 
were 0.708 (p=0.0003, 0.621–0.785, 95% CI) and 
0.793 (p=0.0002, 0.617–0.914, 95% CI), respectively. 
The AUC of the R model were 0.787 (p<0.0001, 0.706
–0.854, 95% CI) and 0.771 (p=0.0117, 0.593–0.899, 
95% CI), respectively. The AUC of the S + R model 
were 0.875 (p<0.0001, 0.806–0.927, 95% CI) and 
0.879 (p<0.0001, 0.718–0.966, 95% CI), respectively 
(figure 6). 

The prediction performances of S and R models 
were similar, and no statistically significant                 
difference could be found between the two (training 

set p=0.3155, test set p=0.8815, overall set 
p=0.4001). In the training set, compared to the S and 
the R model, the prediction performance of S+R  
model is significantly better (p=0.0051 for the S and 
S+R model, p =0.0129 for the R and S+R model). 
However, the test set showed no statistically                
significant differences (p=0.0770 for the S and S+R 
model, p=0.3964 for the R and the S+R model).                
Nevertheless, the AUC of S+R model was higher than 
S and R model. This still indicated a trend that the 
S+R model was slightly better than S and R models. 
Moreover, in the overall set, compared to the S model 
and the R model, the prediction performance of S+R 
model was better (p=0.0012 for the S and S+R model, 
p =0.0093 for the R and S+R model) (table 5). The 
S+R model underwent a 5-fold cross-certification, 
and the AUC value of mean ROC was 0.74 (figure 6).  

Cao & Shu / Can radiomics predict brain metastases? 351 

Figure 6. Spectral model, R: radiomics model, S + R: integrated model; (a): ROC of S model, R model, S + R  model in training set; 
(b): ROC of S  model, R model, S + R model in test set; (c): ROC of S model, R model, S + R model in overall set. 

c b a 

Figure 7. Model validation 
(5-fold cross-certification). 

  

Training set Test set Overall set 
AUC 

P value 
95% CI 

P AUC 
P value 
95% CI 

P P AUC 
P value 
95% CI   S R S+R S R S+R S R S+R 

S 
0.708 

0.0003, 
0.621-0.785 

- 0.3155 0.0051 
0.793 

0.0002, 
0.617-0.914 

- 0.8815 0.0770 
0.724 

<0.0001, 
0.649-0.792 

  0.4001 0.0012 

R 
0.787 

<0.0001, 
0.706-0.854 

- - 0.0129 
0.771 

0.0117, 
0.593-0.899 

- - 0.3964 
0.782 

<0.0001, 
0.710-0.843 

    0.0093 

S+R 
0.875 

<0.0001, 
0.806-0.927 

- - - 
0.879 

<0.0001, 
0.718-0.966 

- - - 
0.879 

<0.0001, 
0.819-0.925 

      

Table 5. Prediction performance of S,R and S+R models in training, test and overall sets. 
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DISCUSSION  
 

The value of spectral CT in lung cancer is reflected 
in the qualitative, classification, staging, and                 
prognosis evaluation. The research on the prognostic 
utility of spectral CT has mainly focused at lymph 
node metastasis and bone metastasis for lung cancer 
(16-17). The detection of BrMs of lung cancer usually 
depends on the clinical manifestations combined 
with MRI or CT examination. Studies on the risk            
factors of BrMs always focus on clinical features.         
Epidermal growth factor receptor, anaplastic            
lymphoma kinase, or rearranged during transfection 
gene status are also considered as high risk factors 
for predicting BrMs in lung cancer (18-19). One                
investigation has confirmed that BrMs in stage IA 
peripheral small cell lung cancer (SCLC) patients can 
be predicted by the thickness of the bronchovascular 
bundle on CT (20). The necrosis rate of lesions pheralis 
that lead to lung cancer brain and bone metastasis 
(21).  

The findings of this study demonstrated the                 
existence of significant differences in λHU and IC, but 
not in WC between BrMs and BrMs-free groups. The 
author believes that IC and λ are potential predictors 
of BrMs risk in lung cancer. In different research            
directions, λHU, IC, and WC have different values 
when evaluating spectral CT in lung cancer. Energy 
spectrum parameters based on enhanced scanning 
might provide more valuable parameters. Only              
unenhanced images were selected in this study             
because they were easy to obtain, and could                
accommodate patients with allergies or intolerance 
contrast media.  

Identifying tumor metastasis is one of the most 
significant tasks of tumor molecular imaging. For 
example, intracranial tumorigenicity of lung tumor 
cells is increased by the phenotypic plasticity of the 
BrMs microenvironment (22). The circadian rhythm 
regulator hepatic leukemia factor is downregulated, 
which encourages the multiple organ distant              
metastasis of NSCLC (23). Although the molecular             
imaging of metastasis has made substantial progress 
as a field of clinical research, its accuracy needs to be 
verified. CT, Positron Emission Tomography-CT, MRI 
and other imaging methods are more difficult to              
predict the potential of BrMs; thus, and radiomics has 
become a prominent topic in recent years. The               
predictive significance of CT and MRI imaging               
features on the survival rate of BrMs of NSCLC has 
been supported by some studies (24-25). However, 
these studies were based on the specific BrMs that 
have been found, and the research subjects were 
metastatic tumors, not lung cancer lesions                 
themselves. However, the survival rates of patients 
with early NSCLC are highly correlated with                  
radiomics, according to a few research (26). 

Based on the features, CT imaging can potentially 
predict BrMs of lung cancer (27). This findings of this 

study showed that unenhanced spectral CT (70 keV 
and 120 keV sequence models) could also predict the 
likelihood of BrMs, and the combined model was 
slightly better. 

Although radiomics has many advantages, it does 
not need more examination time or costs. It is a more 
accurate diagnosis without increasing pain in                    
patients. However, it has some shortcomings for a 
long time, such as the incomprehensible and                   
unreadable features and the poor consistency and 
repeatability in various studies. In this study, we 
tried to combine radiomics features with quantitative 
parameters of spectral CT to establish an integrated 
model to increase the readability. The results in the 
training set showed that the combined S+R model is 
better than S and R model in predicting BrMs.               
Although this trend is only indicated in the test set, 
the prediction performance is still good in the overall 
set. Therefore, we believe the S + R model may be a 
new prediction model for lung cancer patients. 

This study has a few drawbacks. First, since this 
was a retrospective study with participants only from 
our institution, selection bias might be present.              
Second, among 162 patients, only 25 had BrMs; thus, 
the sample size was limited. Third, the follow-up time 
was short, and the clinical parameters including 
smoking index, TNM stage, pathological grade, and 
treatment plan were not included in the study due to 
incomplete data. Other related genes, such as EGFR 
and ALK, were not included in the study. Further  
research and verification are needed in the future. 

In conclusion, patients with BrMs frequently have 
elevated IC and λHU. The spectral CT-based                    
radiomics model performed well in predicting BrMs. 
Furthermore, the integrated model incorporating 
radiomics features and spectral CT parameters           
appears to be more favorable for predicting BrMs. In 
the future, we may develop a more advanced model 
to categorize lung cancer patients' risk, and treat the 
high-risk population earlier to raise patient survival 
rates. 
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