[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 2 (4-2024) ::
Int J Radiat Res 2024, 22(2): 427-433 Back to browse issues page
A new approach to optimize the genipin gel dosimeter formulation
S.M.M. Abtahi , F. Bahrami , D. Sardari
Physics Department, Imam Khomeini International University, Qazvin, Iran , sm.abtahi@sci.ikiu.ac.ir
Abstract:   (534 Views)
Background: In this work, we investigated the effect of adding 0.3% w/w of the non-toxic substance agarose to the dosimeter formulation of genipin radiochromic gel, which was named LCA-GENA (Low Concentration Agarose-GENipin and Agarose) gel dosimeter.  Materials and Methods: A compact linear accelerator with a beam quality of 6 MV and a dose rate of  200 cGy/min irradiated the produced gel dosimeters in a dose range of 0-10 Gy. A UV-Visible spectrophotometer was used to read out the irradiated gel dosimeters. Calibration curves for both absorbance peak and area-under-spectrum responses were investigated. Furthermore, the physical and radiological characteristics of the new formulation were investigated. Results: The results showed that the dose sensitivity of the LCA-GENA gel dosimeter under the irradiated conditions is (8.4 ± 0.15) × 10-3 cm-1 Gy-1. Results showed adding the abovementioned percentage of agarose will increase the melting point of the genipin gel dosimeter from 24°C to 28°C. Also, an investigation of the radiological properties of the novel formulation revealed that this radiochromic gel is water equivalent. Conclusion: From the obtained results, it is verified that adding 0.3% w/w agarose to the genipin gel dosimeter leads to an increase in the melting point of the original genipin gel dosimeter, easier fabrication, and lower price than that of higher agarose concentrations. The mentioned features make this gel suitable for dosimetry applications in clinical and radiotherapy environments.
Keywords: Radiochromic gel dosimeter, dose sensitivity, GENA, radiological properties.
Full-Text [PDF 668 kb]   (204 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Farajollahi AR, Pak F, Horsfield M, Myabi Z (2014) The basic radiation properties of the N-isopropylacrylamide based polymer gel dosimeter. Int J Radiat Res, 12(4): 347-354.
2. Al-Asady AMA, Razak NNA, Zin MHM, Mahmud S (2022) Radiological properties and structural morphology of different MAGAT gel dosimeters formulation. Int J Radiat Res, 20(2): 439-445. [DOI:10.52547/ijrr.20.2.27]
3. Vedelago J, Chacón D, Romero M, et al. (2021) Dose-response of Fricke- and PAGAT-dosimetry gels in kilovoltage and megavoltage photon beams: Impact of LET on sensitivity. Physica Medica, 84: 41-49. [DOI:10.1016/j.ejmp.2021.03.002]
4. Abtahi SM, Zahmatkesh MH, Khalafi H (2016) Investigation of an improved MAA-based polymer gel for thermal neutron dosimetry. J Radioanal Nucl Chem, 307(2): 855-868. [DOI:10.1007/s10967-015-4469-7]
5. Vand KA, Zahmatkesh MH, SMR Aghamiri, et al. (2008) Verification of dose rate and energy dependence of MAGICA polymer gel dosimeter with electron beams. Int J Radiat Res, 6: 31-36.
6. Allahverdi Pourfallah T, Allahverdi M, Riyahi Alam N, et al. (2009) Verifying the accuracy of dose distribution in Gamma Knife unit in presence of inhomogeneities using PAGAT polymer gel dosimeter and MC simulation. Int J Radiat Res, 7(1): 49-56. [DOI:10.1118/1.3147256]
7. Abtahi SM, Aghamiri SMR, Khalafi H, Rahmani F (2014) An investigation into the potential applicability of gel dosimeters for dosimetry in boron neutron capture therapy. Int J Radiat Res, 12(2 ): 149-159.
8. Khadem-Abolfazli M, Mahdavi M, Mahdavi SRM, Ataei G (2013) Dose enhancement effect of gold nanoparticles on MAGICA polymer gel in mega voltage radiation therapy. Int J Radiat Res, 11(1): 55-61.
9. Keshtkar M, Takavar A, Zahmatkesh MH, et al. (2014) Three-dimensional gel dosimetry for dose volume histogram verification in compensator-based IMRT. Int J Radiat Res, 12(1): 13-20.
10. Kozicki M, Berg A, Maras P, et al. (2020) Clinical radiotherapy application of N-vinylpyrrolidone-containing 3D polymer gel dosimeters with remote external MR-reading. Physica Medica, 69: 134-146. [DOI:10.1016/j.ejmp.2019.11.014]
11. Gafar SM, El-Shawadfy SR, El-Kelany MA (2022) Effect of gamma rays on sensitive prepared dyed gels as radiation dosimeters. J Radioanalytical and Nuclear Chemistry, 331(11): 4425-4435. [DOI:10.1007/s10967-022-08524-6]
12. Colnot J, Huet C, Gschwind R, Clairand I (2018) Characterisation of two new radiochromic gel dosimeters TruView™ and ClearView™ in combination with the vista™ optical CT scanner: A feasibility study. Physica Medica, 52: 154-164. [DOI:10.1016/j.ejmp.2018.07.002]
13. Abtahi SM (2016) Characteristics of a novel polymer gel dosimeter formula for MRI scanning: Dosimetry, toxicity and temporal stability of response. Physica Medica, 32(9): 1156-1161. [DOI:10.1016/j.ejmp.2016.08.008]
14. Farhood B, Geraily G, Abtahi SMM (2019) A systematic review of clinical applications of polymer gel dosimeters in radiotherapy. Appl Radiat Isot, 143: 47-59. [DOI:10.1016/j.apradiso.2018.08.018]
15. Vandecasteele J and De Deene Y (2013) Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification. Physics in Medicine and Biology, 58: 6241 - 6262. [DOI:10.1088/0031-9155/58/18/6241]
16. Djerassi C, Gray JD, Kincl FA (1960) Naturally Occurring Oxygen Heterocyclics. IX. Isolation and Characterization of Genipin. J Org Chem, 25(12): 2174-2177. [DOI:10.1021/jo01082a022]
17. Yao C-H, Liu B-S, Chang C-J, et al. (2004) Preparation of networks of gelatin and genipin as degradable biomaterials. Materials Chemistry and Physics, 83(2): 204-208. [DOI:10.1016/j.matchemphys.2003.08.027]
18. Jordan K (2008) Zero diffusion radiochromic genipin-gelatin dosimeter. Med Phys, 35. [DOI:10.1118/1.2965980]
19. Davies JB, Bosi SG, Baldock C (2013) Dosimetry aspects of a non-diffusing genipin-gelatin gel. Radiation Physics and Chemistry, 83: 19-27. [DOI:10.1016/j.radphyschem.2012.09.018]
20. Marrale M, Collura G, Gallo S, et al. (2017) Analysis of spatial diffusion of ferric ions in PVA-GTA gel dosimeters through magnetic resonance imaging. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 396: 50-55. [DOI:10.1016/j.nimb.2017.02.008]
21. Abtahi SMM (2019) Response overshoot: a challenge for the application of polymer gel dosimeters. Journal of Radioanalytical and Nuclear Chemistry, 321(3): 885-893. [DOI:10.1007/s10967-019-06658-8]
22. Gorjiara T, Hill R, Kuncic Z, et al. (2011) Radiological characterization and water equivalencyof genipin gel for x-ray and electron beam dosimetry. Phys Med Biol, 56: 4685-4699. [DOI:10.1088/0031-9155/56/15/004]
23. Al-jarrah AM, Abdul Rahman A, Shahrim I, et al. (2016) Effect of inorganic salts and glucose additives on dose-response, melting point and mass density of genipin gel dosimeters. Phys Medica, 32(1): 36-41. [DOI:10.1016/j.ejmp.2015.09.003]
24. Bahrami F, Abtahi SMM, Sardari D, Bakhshandeh M (2021) Readout temperature effect on the response of the genipin gel dosimeter. Int J Radiat Res, 19(3): 685-694. [DOI:10.52547/ijrr.19.3.685]
25. Health Facility Guidelines (2017) International Health Facility Guidelines, Health Facility Briefing & Design 230, Oncology Unit, Radiation Part B.
26. Bahrami F, Abtahi SMM, Sardari D, Bakhshandeh M (2021) Investigation of a modified radiochromic genipin-gel dosimeter: Dosimetric characteristics and radiological properties. J Radioanalytical and Nuclear Chemistry, 328(1): 19-31. [DOI:10.1007/s10967-021-07635-w]
27. Abtahi SMM, Bahrami F, Sardari D (2023) An investigation into the dose rate and photon energy dependence of the GENA gel dosimeter in the MeV range. Physica Medica, 106: 102522. [DOI:10.1016/j.ejmp.2022.102522]
28. Pavoni JF and Baffa O (2012) An evaluation of dosimetric characteristics of MAGIC gel modified by adding formaldehyde (MAGIC-f). Radiat Meas, 47(11-12): 1074-1082. [DOI:10.1016/j.radmeas.2012.10.004]
29. Khan FM (2009) The Physics of Radiation Therapy Fourth ed. 2009, Philadelphia: Lippincott Williams & Wilkins.
30. Podgorsak EB (2016) Radiation Physics for Medical Physicists. 2016. [DOI:10.1007/978-3-319-25382-4]
31. Abtahi SM, Aghamiri SMR, Khalafi H (2014) Optical and MRI investigations of an optimized acrylamide-based polymer gel dosimeter. J Radioanal Nucl Chem, 300: 287-301. [DOI:10.1007/s10967-014-2983-7]
32. Marques de Sá JP (2007) Applied Statistics Using SPSS, STATISTICA, MATLAB and R. 2 ed. 2007, New York: Springer. [DOI:10.1007/978-3-540-71972-4]
33. Baldock C, Lepage M, Back SA, et al. (2001) Dose resolution in radiotherapy gel dosimetry: effect of echo spacing in MRI pulse sequence. Phys Med Biol, 46: 449-460. [DOI:10.1088/0031-9155/46/2/312]
34. Barton B and Peat J (2014) Medical Statistics: A Guide to SPSS, Data Analysis and Critical Appraisal. 2nd ed. 2014: wiley.
35. Xie JC, Katz EAB, Alexander KM, et al. (2017) Leuco-crystal-violet micelle gel dosimeters: Component effects on dose-rate dependence. Journal of Physics: Conference Series, 847(1): 012041. [DOI:10.1088/1742-6596/847/1/012041]
36. Gallo S, Gambarini G, Veronese I, et al. (2019) Does the gelation temperature or the sulfuric acid concentration influence the dosimetric properties of radiochromic PVA-GTA Xylenol Orange Fricke gels? Radiation Physics and Chemistry, 160: 35-40. [DOI:10.1016/j.radphyschem.2019.03.014]
37. Jordan K and Avvakumov N (2009) Radiochromic leuco dye micelle hydrogels: I. Initial investigation. Physics in Medicine & Biology, 54(22): 6773. [DOI:10.1088/0031-9155/54/22/002]
38. Kwiatos K, Maras P, Kadlubowski S, et al. (2018) Tetrazolium salts-Pluronic F-127 gels for 3D radiotherapy dosimetry. Physics in Medicine & Biology, 63(9): 095012. [DOI:10.1088/1361-6560/aabbb6]
39. Kozicki M, Jaszczak M, Maras P, et al. (2017) On the development of a VIPARnd radiotherapy 3D polymer gel dosimeter. Phys Med Bid, 62(3): 986-1008. [DOI:10.1088/1361-6560/aa5089]
40. Hurley C, McLucas C, Pedrazzini G, Baldock C (2006) High-resolution gel dosimetry of a HDR brachytherapy source using normoxic polymer gel dosimeters: Preliminary study. Nuclear Instruments & Methods in Physics Research A, 565: 801-811. [DOI:10.1016/j.nima.2006.05.167]
41. Babic S, Battista J, Jordan K (2009) Radiochromic leuco dye micelle hydrogels: II. Low diffusion rate leuco crystal violet gel. Physics in Medicine & Biology, 54(22): 6791. [DOI:10.1088/0031-9155/54/22/003]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abtahi S, Bahrami F, Sardari D. A new approach to optimize the genipin gel dosimeter formulation. Int J Radiat Res 2024; 22 (2) :427-433
URL: http://ijrr.com/article-1-5453-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 2 (4-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4682