[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 2 (4-2024) ::
Int J Radiat Res 2024, 22(2): 487-494 Back to browse issues page
Cortactin enhances invadopodium formation to promote invasion and metastasis of gastric cancer cells via matrix metalloproteinases
Y. Wu , M. Peng , Q. Tang , P. Guo , P. Nie , Y. Cui , J. Yu
Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, 610031, China , dr_jiahuiyu@163.com
Abstract:   (363 Views)
Background: One prevalent malignant tumor in the digestive system is gastric cancer (GC). Cortactin is an intracellular cytoskeleton protein and exerts the crucial function in GC development. However, the roles and mechanisms of cortactin in the invasion and metastasis of GC need further exploration. Materials and Methods: Cortactin expression in GC tissues and cells via western blot and quantitative reverse transcription PCR. Cell migration and invasion were detected by the Transwell assays. Immunofluorescence staining and extracellular matrix (ECM) degradation assays verified the ability to invadopodium formation and ECM degradation.We then used gelatin zymography to identify the relationship between cortactin and matrix metalloproteinases (MMPs). The xenograft tumor model proved that cortactin can accelerate tumor growth and intraperitoneal metastasis in mice. Results: We found that cortactin is overexpressed in GC. cortactin overexpression facilitated cell migration and invasion, whereas cortactin silencing exerted the opposite function. cortactin can facilitate invadopodium formation and ECM degradation in GC cells. Cortactin can positively regulate matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9) levels. Furthermore, Cortactin accelerate GC progression in vivo. Conclusion: In short, this study confirmed that cortactin enhanced invadopodium formation to accelerate GC development through upregulating MMP2 and MMP9.
Keywords: Gastric cancer, cortactin, invadopodium, metastasis, matrix metalloproteinases.
Full-Text [PDF 1497 kb]   (127 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Chen W, Zheng R, Baade PD, et al. (2016) Cancer statistics in China, 2015. CA Cancer J Clin, 66(2): 115-32. [DOI:10.3322/caac.21338]
2. Smyth EC, Nilsson M, Grabsch HI, et al. (2020) Gastric cancer. Lancet, 396(10251): 635-648. [DOI:10.1016/S0140-6736(20)31288-5]
3. Patel TH and Cecchini M (2020) Targeted therapies in advanced gastric cancer. Curr Treat Options Oncol, 21(9): 70. [DOI:10.1007/s11940-020-0616-8]
4. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin, 70(1): 7-30. [DOI:10.3322/caac.21590]
5. Poorolajal J, Moradi L, Mohammadi Y, et al. (2020) Risk factors for stomach cancer: a systematic review and meta-analysis. Epidemiol Health, 42: e2020004. [DOI:10.4178/epih.e2020004]
6. Bravo Neto GP, dos Santos EG, Victer FC, Carvalho CE (2014) Lymph node metastasis in early gastric cancer. Rev Col Bras Cir, 41(1): 11-7. [DOI:10.1590/S0100-69912014000100004]
7. Kodera Y (2013) Gastric cancer with minimal peritoneal metastasis: is this a sign to give up or to treat more aggressively? Nagoya J Med Sci, 75(1-2): 3-10.
8. Riihimäki M, Hemminki A, Sundquist K, et al. (2016) Metastatic spread in patients with gastric cancer. Oncotarget, 7(32): 52307-52316. [DOI:10.18632/oncotarget.10740]
9. Eble JA and Niland S (2019) The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis, 36(3): 171-198. [DOI:10.1007/s10585-019-09966-1]
10. Paolillo, M and Schinelli S (2019) Extracellular Matrix Alterations in Metastatic Processes. Int J Mol Sci, 20(19). [DOI:10.3390/ijms20194947]
11. Jabłońska-Trypuć, A, Matejczyk M, Rosochacki S (2016) Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem, 31(sup1): 177-183. [DOI:10.3109/14756366.2016.1161620]
12. Läubli H and Borsig L (2019) Altered cell adhesion and glycosylation promote cancer immune suppression and metastasis. Front Immunol, 10: 2120. [DOI:10.3389/fimmu.2019.02120]
13. Doyle AD, Nazari SS, Yamada KM (2022) Cell-extracellular matrix dynamics. Phys Biol, 19(2). [DOI:10.1088/1478-3975/ac4390]
14. Linder S, Cervero P, Eddy R, Condeelis J (2023) Mechanisms and roles of podosomes and invadopodia. Nat Rev Mol Cell Biol, 24(2): 86-106. [DOI:10.1038/s41580-022-00530-6]
15. Mao L, Whitehead CA, Paradiso L, et al. (2018) Enhancement of invadopodia activity in glioma cells by sublethal doses of irradiation and temozolomide. J Neurosurg, 129(3): 598-610. [DOI:10.3171/2017.5.JNS17845]
16. Saha T and Gil-Henn H (2021) Invadopodia, a Kingdom of Non-Receptor Tyrosine Kinases. Cells, 10(8). [DOI:10.3390/cells10082037]
17. Saykali BA and El-Sibai M (2014) Invadopodia, regulation, and assembly in cancer cell invasion. Cell Commun Adhes, 21(4): 207-12. [DOI:10.3109/15419061.2014.923845]
18. Wu B, Wang YX, Wang JJ, et al. (2022) PLXDC2 enhances invadopodium formation to promote invasion and metastasis of gastric cancer cells via interacting with PTP1B. Clin Exp Metastasis, 39(4): 691-710. [DOI:10.1007/s10585-022-10168-5]
19. Sun J, He H, Pillai S, et al. (2013) GATA3 transcription factor abrogates Smad4 transcription factor-mediated fascin overexpression, invadopodium formation, and breast cancer cell invasion. J Biol Chem, 288(52): 36971-82. [DOI:10.1074/jbc.M113.506535]
20. Schnoor M, Stradal TE, Rottner K (2018) Cortactin: Cell Functions of A Multifaceted Actin-Binding Protein. Trends Cell Biol, 28(2): 79-98. [DOI:10.1016/j.tcb.2017.10.009]
21. Daly RJ (2004) Cortactin signalling and dynamic actin networks. Biochem J, 382(Pt 1): 13-25. [DOI:10.1042/BJ20040737]
22. Kirkbride KC, Sung BH, Sinha S, Weaver AM (2011) Cortactin: a multifunctional regulator of cellular invasiveness. Cell Adh Migr, 5(2): 187-98. [DOI:10.4161/cam.5.2.14773]
23. Helgeson LA and Nolen BJ (2013) Mechanism of synergistic activation of Arp2/3 complex by cortactin and N-WASP. Elife, 2: e00884. [DOI:10.7554/eLife.00884]
24. Jeannot P and Besson A (2020) Cortactin function in invadopodia. Small GTPases, 11(4): 256-270. [DOI:10.1080/21541248.2017.1405773]
25. Weaver AM(2008) Cortactin in tumor invasiveness. Cancer Lett, 265(2): 157-66. [DOI:10.1016/j.canlet.2008.02.066]
26. Wang L, Zhao K, Ren B, et al. (2015) Expression of cortactin in human gliomas and its effect on migration and invasion of glioma cells. Oncol Rep, 34(4): 1815-24. [DOI:10.3892/or.2015.4156]
27. Zhang X, Liu K, Zhang T, et al. (2017) Cortactin promotes colorectal cancer cell proliferation by activating the EGFR-MAPK pathway. Oncotarget, 8(1): 1541-1554. [DOI:10.18632/oncotarget.13652]
28. Wei J, Wang Y, Xie B, et al. (2022) Cortactin and HER2 as potential markers for dural-targeted therapy in advanced gastric cancer. Clin Exp Med, 22(3): 403-410. [DOI:10.1007/s10238-021-00752-6]
29. Wei J, Zhao ZX, Li Y, et al. (2014) Cortactin expression confers a more malignant phenotype to gastric cancer SGC-7901 cells. World J Gastroenterol, 20(12): 3287-300. [DOI:10.3748/wjg.v20.i12.3287]
30. Cui N, Hu M, Khalil RA (2017) Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci, 147: 1-73. [DOI:10.1016/bs.pmbts.2017.02.005]
31. Humphries MJ (2009) Cell adhesion assays. Methods Mol Biol, 522: 203-10. [DOI:10.1007/978-1-59745-413-1_14]
32. Xie D, Liu L, Osaiweran H, et al. (2015) Detection and Characterization of Metastatic Cancer Cells in the Mesogastrium of Gastric Cancer Patients. PLoS One, 10(11): e0142970. [DOI:10.1371/journal.pone.0142970]
33. Kanner SB, Reynolds AB, Vines RR, Parsons JT (1990) Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases. Proc Natl Acad Sci USA, 87(9): 3328-32. [DOI:10.1073/pnas.87.9.3328]
34. Gunst SJ (2004) Actions by actin: reciprocal regulation of cortactin activity by tyrosine kinases and F-actin. Biochem J, 380(Pt 2): e7-8. [DOI:10.1042/bj20040559]
35. Wu H, Cheng X, Ji X, et al. (2016) Cortactin contributes to the tumorigenicity of colorectal cancer by promoting cell proliferation. Oncol Rep, 36(6): 3497-3503. [DOI:10.3892/or.2016.5207]
36. Sheen-Chen SM, Huang CY, Liu YY, et al. (2011) Cortactin in breast cancer: analysis with tissue microarray. Anticancer Res, 31(1): 293-7.
37. Huang X, Ji J, Xue H, et al. (2012) Fascin and cortactin expression is correlated with a poor prognosis in hepatocellular carcinoma. Eur J Gastroenterol Hepatol, 24(6): 633-9. [DOI:10.1097/MEG.0b013e3283515a18]
38. Chuma M, Sakamoto M, Yasuda J, et al. (2004) Overexpression of cortactin is involved in motility and metastasis of hepatocellular carcinoma. J Hepatol, 41(4): 629-36. [DOI:10.1016/j.jhep.2004.06.018]
39. Nakane K, Fujita Y, Terazawa R, et al. (2012) Inhibition of cortactin and SIRT1 expression attenuates migration and invasion of prostate cancer DU145 cells. Int J Urol, 19(1): 71-9. [DOI:10.1111/j.1442-2042.2011.02888.x]
40. Di Martino JS, Akhter T, Bravo-Cordero JJ (2021) Remodeling the ECM: Implications for Metastasis and Tumor Dormancy. Cancers (Basel), 13(19). [DOI:10.3390/cancers13194916]
41. Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z (2020) Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun, 11(1): 5120. [DOI:10.1038/s41467-020-18794-x]
42. Perrin L and Gligorijevic B (2022) Proteolytic and mechanical remodeling of the extracellular matrix by invadopodia in cancer. Phys Biol, 20(1). [DOI:10.1088/1478-3975/aca0d8]
43. Eddy RJ, Weidmann MD, Sharma VP, Condeelis JS (2017) Tumor Cell Invadopodia: Invasive Protrusions that Orchestrate Metastasis. Trends Cell Biol, 27(8): 595-607. [DOI:10.1016/j.tcb.2017.03.003]
44. Liu Y, Lu L, Wen D, et al. (2020) MiR-612 regulates invadopodia of hepatocellular carcinoma by HADHA-mediated lipid reprogramming. J Hematol Oncol, 13(1): 12. [DOI:10.1186/s13045-019-0841-3]
45. Karamanou K, Franchi M, Vynios D, Brézillon S (2020) Epithelial-to-mesenchymal transition and invadopodia markers in breast cancer: Lumican a key regulator. Semin Cancer Biol, 62: 125-133. [DOI:10.1016/j.semcancer.2019.08.003]
46. Sun J, Lu F, He H, et al. (2014) STIM1- and Orai1-mediated Ca(2+) oscillation orchestrates invadopodium formation and melanoma invasion. J Cell Biol, 207(4): 535-48. [DOI:10.1083/jcb.201407082]
47. Yamaguchi H, Pixley F, Condeelis J (2006) Invadopodia and podosomes in tumor invasion. Eur J Cell Biol, 85(3-4): 213-8. [DOI:10.1016/j.ejcb.2005.10.004]
48. Xue Y, Li M, Hu J, et al. (2022) Ca(v)2.2-NFAT2-USP43 axis promotes invadopodia formation and breast cancer metastasis through cortactin stabilization. Cell Death Dis, 13(9): 812. [DOI:10.1038/s41419-022-05174-0]
49. Li Y, Zhang H, Gong H, et al. (2018) miR-182 suppresses invadopodia formation and metastasis in non-small cell lung cancer by targeting cortactin gene. J Exp Clin Cancer Res, 37(1): 141. [DOI:10.1186/s13046-018-0824-1]
50. Niland S, Riscanevo AX, Eble JA (2021) Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci, 23(1). [DOI:10.3390/ijms23010146]
51. Jacob A, Jing J, Lee J, et al. (2013) Rab40b regulates trafficking of MMP2 and MMP9 during invadopodia formation and invasion of breast cancer cells. J Cell Sci, 126(Pt 20): 4647-58. [DOI:10.1242/jcs.126573]
52. Jiang H and Li H (2021) Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: a systematic review and meta-analysis. BMC Cancer, 21(1): 149. [DOI:10.1186/s12885-021-07860-2]
53. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol, 18(5): 1135-49. [DOI:10.1200/JCO.2000.18.5.1135]
54. Clark ES, Whigham AS, Yarbrough WG, Weaver AM (2007) Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer Res, 67(9): 4227-35. [DOI:10.1158/0008-5472.CAN-06-3928]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Wu Y, Peng M, Tang Q, Guo P, Nie P, Cui Y et al . Cortactin enhances invadopodium formation to promote invasion and metastasis of gastric cancer cells via matrix metalloproteinases. Int J Radiat Res 2024; 22 (2) :487-494
URL: http://ijrr.com/article-1-5483-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 2 (4-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4660