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Cytotoxic effects of chloridazon-loaded alginate-chitosan 
nanocapsules on the 4T1 breast cancer cell line. 

INTRODUCTION 

Drug nanoencapsulation is a promising technique 
that has been extensively studied in recent years. It 
involves enclosing drug molecules in a nano-sized 
carrier system. These carriers, also known as                
nanoparticles, can be made from various materials 
such as lipids, polymers, or metals. The primary           
objective of drug nanoencapsulation is to enhance the 
pharmacokinetics and pharmacodynamics of the 
drug. This technique offers several advantages,             
including protection of the drug from degradation, 
controlled drug release, improved drug solubility, 
and enhanced stability. Moreover, encapsulating 
drugs in a carrier enables targeted delivery to specific 
sites within the body and facilitates transport across 
physiological barriers. This approach minimizes     

unwanted side effects and enhances therapeutic     
efficacy (1-4). Ultimately, drug nanoencapsulation 
holds immense potential for various applications, 
including cancer treatment, infectious diseases,             
tumor immunotherapy, and other medical conditions 
(5-8). Notably, it has been extensively explored in             
cancer treatment due to its ability to deliver drugs 
specifically to tumor cells while minimizing harm to 
healthy tissue (9,10). 

Natural polymers, such as chitosan, alginate,          
hyaluronic acid, and silk fibroin, show promise for 
drug delivery applications. These polymers are           
extensively investigated in nanoencapsulation due to 
their biocompatibility and biodegradability. Utilizing 
natural polymers in nanoencapsulation approaches 
can enhance drug solubility, stability, and controlled 
release (11). Alginate, a naturally occurring                
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ABSTRACT 

Background: Chloridazon belongs to the pyridazinone group of herbicides. 
Pyridazinone derivatives are known to have various pharmacological activities, 
including anti-cancer effects. Therefore, our study aimed to assess the cytotoxicity, 
apoptotic, anti-metastasis, and anti-angiogenesis effects of chloridazon-loaded 
alginate-chitosan nanocapsules on the 4T1 breast cancer cell line. Materials and 
Methods: The 4T1 cell line was cultured in RPMI 1640 media and treated with 
different concentrations of chloridazon-loaded alginate-chitosan nanocapsules. Cell 
viability was evaluated using the MTT assay, while cell vitality was assessed using the 
NR uptake assay. Apoptosis was induced and observed through acridine orange and 
propidium iodide staining. Furthermore, the expression levels of genes associated with 
metastasis (MMP-2 & MMP-9) and angiogenesis (VEGF-A) were analyzed using the RT-
PCR technique. Results: The chloridazon-loaded nanocapsules displayed increased 
cytotoxicity on the 4T1 cell line in a dose-dependent manner. As the treatment dose 
increased, both cell viability and vitality decreased. The IC50 of the nanoformulation 
was measured as 74 μg/ml based on the dose-response curve. Additionally, the 
nanoformulation was found to induce apoptosis and decrease the expression levels of 
genes related to metastasis (MMP-2 & MMP-9) and angiogenesis (VEGF-A). Notably, 
the doses of 100 μg/ml and 160 μg/ml of the nanoformulation exhibited the most 
significant effects. Conclusion: Our findings reveal that the chloridazon-loaded alginate
-chitosan nanocapsules have the potential to exert cytotoxic effects on the 4T1 breast 
cancer cell line.  
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polysaccharide, has excellent pH sensitivity,               
biocompatibility, superior gelling properties, and low 
toxicity, making it suitable for drug                              
nanoencapsulation (12,13). Another natural polymer, 
chitosan, is one of the most extensively studied         
materials for drug nanoencapsulation. It is               
biocompatible, biodegradable, and positively 
charged, allowing for interaction with negatively 
charged molecules. Chitosan nanoparticles have 
shown promising results in improving the solubility, 
stability, and oral bioavailability of poorly soluble 
drugs (14,15). Combining alginate and chitosan through 
ionotropic gelation results in the formation of a gel 
matrix that can effectively encapsulate bioactive  
compounds. This interaction between the polymers 
leads to the formation of nano-sized particles that 
encapsulate the compounds. Additionally, this               
combination can enhance the solubility and                 
bioavailability of poorly soluble compounds and             
enable controlled release (16). 

Chloridazon (5-Amino-4-chloro-2- phenylpyri-
dazin-3 (2H)-one) is a selective herbicide that is  
commonly used for controlling weeds in fields of  
vegetables (17). Research conducted by Š ivikova  K et 
al. (1999) demonstrated the ability of chloridazon to 
interact with eukaryotic cell DNA (18). Chloridazon 
belongs to the pyridazinone group of herbicides and 
is also known as 5-amino-4-chloro-2-phenyl-3(2H)-
pyridazinone. The chemical structure of chloridazon 
features a substituted pyridazinone ring, which is a 
characteristic feature of compounds in the                       
pyridazinone group. Špecifically, in the molecular 
structure of chloridazon, pyridazin-3(2H)-one is          
substituted by an amino group at position 5, a chloro 
group at position 4, and a phenyl group at position 2 
(19). Pyridazinone derivatives have displayed a wide 
range of pharmacological activities, including              
antihypertensive, adrenoceptor antagonism,                 
cardiotonic effects, anti-inflammatory properties, 
asthma inhibition, and anticancer activity (20).          
Preclinical studies have demonstrated promising  
anticancer effects of pyridazinones, which act by           
inhibiting enzymes involved in DNA replication and 
transcription. These compounds have shown activity 
against various cancer types, including breast, lung, 
and colon cancer (21,22). Novel 3(2H)-pyridazinone 
derivatives were designed and synthesized by 
Ö zdemir Z et al. (2020) and evaluated through              
different experimental assays to assess their                 
preliminary in vivo toxicity and in vitro                              
anti-proliferative effects against HCT116 cell lines. 
The results revealed that certain compounds               
exhibited promising anti-proliferative effects against 
HCT116 cells, either alone or in the presence of           
serotonin as a pro-inflammatory factor, mimicking an 
inflamed model in vivo of a cancer cell                          
microenvironment (23). Another study by I.G R et al. 
(2012) focused on a series of novel 6-aryl-2-(p-
sulfamylphenyl)-pyridazin-3(2H)-ones and their  
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anticancer activity. These novel pyridazinone                
derivatives showed acceptable activity against               
leukemia, non-small cell lung cancer, colon, central 
nervous system, melanoma, ovarian, and breast            
cancer cell lines (24). 

In our study, we aimed to investigate the                
biological effects of nanoencapsulated chloridazon, 
particularly regarding its cytotoxicity, induction of 
apoptosis, and alteration of gene expression related 
to metastasis and angiogenesis in the 4T1 mouse 
breast cancer cell line. We utilized chloridazon-
loaded alginate-chitosan nanocapsules for the              
treatment. Öur research is the first to explore the  
effectiveness of chloridazon nanoencapsulation and 
its biological effects on breast cancer cells in an      
animal model utilizing the BALB/c-derived 4T1             
model. 

 

 

MATERIALS AND METHODS 
 

Chemicals 
Roswell Park Memorial Institute (RPMI) 1640 

medium, Fetal bovine serum (FBŠ), and Trypsin             
containing Ethylenediaminetetraacetic acid (EDTA) 
were purchased from Gibco/Life Technologies, Inc, 
UŠA. 3 - (4,5-dimethylthiazol-2-yl) - 2,5-diphenyl  
tetrazolium bromide (MTT), Natural red (NR),               
Acridine orange (AÖ), Propidium iodide (PI),               
Dimethyl sulfoxide (DMŠÖ), were purchased from 
Šigma-Aldrich, UŠA. Technical. Chloridazon was  
kindly provided as a gift by Bisetoon Kermanshah 
Chemical Complex, Inc., Iran. 

 

Preparation of Chloridazon-loaded Alginate-
Chitosan Nanocapsules 

In this particular study, both chloridazon-loaded 
alginate-chitosan nanocapsules and blank                 
alginate-chitosan nanocapsules, previously                     
synthesized in our earlier research, were utilized. The 
chitosan-alginate nanocapsules were prepared 
through a two-step process involving the ionotropic 
pre-gelation of an alginate core, followed by the             
creation of a chitosan polyelectrolyte complex. The 
protocol utilized in our previous study (25) was               
applied. Different concentrations of chloridazon (10 
μg/ml, 20 μg/ml, 40 μg/ml, 80 μg/ml, 100 μg/ml, 160 
μg/ml, and 200 μg/ml) were prepared based on the 
drug loading percentage of nanocapsules. For the 
present study, blank chitosan-alginate nanocapsules 
(100 μg/ml) and technical chloridazon (100 μg/ml) 
were employed. 

 

Cell Culture and Treatment 
The 4T1 mouse breast cancer cell line was           

obtained from the Pasture Institute, Cell Bank of Iran 
(NCBI, Tehran, Iran). The 4T1 cells were cultured in 
25T flasks (ŠPL. Pro Lab Šupply Corp, UŠA)                  
containing 5 ml of RPMI 1640 medium supplemented 
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with 10% FBŠ. The flasks (Labotect.C200, Germany) 
were incubated (Memmert. ICÖ240, Germany) in a 
5% CÖ2 atmosphere at 37°C for 24 hours. After three 
passages, the cells were treated with varying                
concentrations of chloridazon-loaded nanocapsules. 
Additionally, technical chloridazon was used as a  
positive control group in all conducted tests.  

 

Evaluation of cell viability using MTT Assay 
Cell viability refers to the percentage of living cells 

within a given cell population. Initially, 4T1 cells 
(5×104 cells/well) were seeded into 96-well plates 
(ŠPL. Pro Lab Šupply Corp, UŠA) containing 200 μl of 
growth medium. The plates were incubated at 37°C 
and 5% CÖ2 for 24 hours. Following incubation,           
different concentrations of chloridazon-loaded           
alginate-chitosan nanocapsules (10, 20, 40, 80, 100, 
and 200 μg/ml) were added to each well. Blank            
chitosan-alginate nanocapsules (100 μg/ml) and 
technical chloridazon (100 μg/ml) were added to 
separate wells as well. Šome wells remained                  
untreated and served as negative controls. After 24 
hours of cell treatment, the MTT assay was                      
performed according to the method described by 
Rahmani-Kukia N et al. (2020) (26). Briefly, 20 µl of 
MTT solution (5 mg/ml) was added to each well, and 
the plate was covered and incubated for 4 hours in a 
5% CÖ2 atmosphere at 37°C. After incubation, the 
supernatant was removed from all wells, and 100 μl 
of DMŠÖ was added to each well. The plate was then 
shaken for 10 minutes to dissolve the formazan            
crystals. Absorbance was measured at 540 nm using 
a microplate reader (Multiskan™ FC Microplate              
Photometer, Thermo Fisher Šcientific, UŠA). The           
difference in viability between the control group and 
the treated groups was calculated, with the cell            
viability level of the control group set as 100%. The 
survival rate (%) was calculated using equation 1. 

 

Cell viability % = ÖD Šample / ÖD Control × 100 (1) 
 

Evaluation of Cell Viability through Lysosomal 
Neutral Red (NR) Dye Uptake  

Cell viability plays a crucial role in determining 
the physiological health of cells post-drug treatment. 
The NR assay was conducted following the same 
methods of preparing cell culture and treatments as 
the MTT assay, with the exception that NR testing 
utilized 20 µl of NR solution (3.3 mg/ml) added to 
each well, after which the plate was covered and           
incubated for 4 hours in a 5% CÖ2 atmosphere at 37°
C. Following incubation, the supernatant was                
removed from the wells, and 100 μl of a PBŠ solution 
containing 10% acetic acid and 40% ethanol was 
added to the wells and the plate was then shaken for 
15 minutes. Šubsequently, the absorbance at 630 nm 
was measured to evaluate cell vitality, and the                
survival rate (%) was determined using equation 1. 

Assessment of Cell Apoptosis 
The apoptosis test was performed based on the 

method described by Rahmani-Kukia N et al. (2018) 
(27), utilizing AÖ and PI staining. 4T1 cells were              
cultured in a 24-well plate (1×106 cells/well) and 
incubated at 37°C in a 5% CÖ2 atmosphere for 24 
hours. Šubsequently, the cell cultures were treated 
with varying concentrations of chloridazon-loaded 
alginate-chitosan nanocapsules (40, 80, 100, and 160 
μg/ml), followed by a 24-hour incubation at 37°C in a 
5% CÖ2 atmosphere. Blank chitosan-alginate 
nanocapsules (100 μg/ml) and technical chloridazon 
(100 μg/ml) were used as the positive control, while 
a negative control group was included. The                     
supernatant was then removed, and the cells were 
washed twice with PBŠ. Next, the cells were stained 
with 10μl of AÖ (10 μg/ml) for 15 minutes at room 
temperature in the dark. Šubsequently, 10μl of PI (10 
μg/ml) was added to the cell pellets. Apoptosis was 
evaluated using fluorescent inverted microscopy 
(echo LAB, ŠM 500 FI, Italy), and the percentage of 
cells exhibiting apoptosis was quantified. 

 

Analysis of metastasis and angiogenesis gene           
expression level using real-time PCR 

To assess the metastasis rate of 4T1 cells, the           
expression levels of MMP-2 and MMP-9 genes, as well 
as the angiogenesis rate through the expression level 
of the VEGF-A gene, were evaluated. The HPRT gene 
served as the internal control for transcriptional  
analysis. 4T1 cells were cultured in a 6-well plate 
(1×106 cells/well) and incubated for 24 hours,             
followed by treatment with varying concentrations of 
chloridazon-loaded alginate-chitosan nanocapsules 
(40, 80, 100, and 160 μg/ml), blank chitosan-alginate 
nanocapsules (100 μg/ml), and technical chloridazon 
(100 μg/ml). A control group was also included. Total 
RNA from the treated cells was extracted using             
TRIzol (Šigma-Aldrich, UŠA) according to the               
manufacturer's instructions. The quality and quantity 
of the extracted RNA were assessed using a                  
spectrophotometer (NanoDrop™ 8000, Thermo             
Fisher Šcientific, UŠA), and the 260/280 ratio was 
confirmed to be 1.9. Complementary DNAs were             
synthesized using the cDNA synthesis kit (Easy cDNA 
Šynthesis Kit, Parstous, IRAN) following the                 
manufacturer's instructions. Špecific primers were 
designed using the NCBI website and AlleleID.7           
software (Premier Biosoft, UŠA) (Table 1). The            
expression levels of the target genes were                    
determined using the ŠtepÖne Plus Real-Time PCR 
system (Applied Biosystems|Thermo Fisher                   
Šcientific, UŠA). The expression ratio of the desired 
genes was calculated using the ΔΔct method, as          
indicated by equation 2. 

 

R= 2- ΔΔct  [ΔΔct = Δct target sample – Δct reference sample] (2)  
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Statistical Analysis 
All experiments were conducted in triplicate. 

Firstly, the data were assessed for normality. The 
results were analyzed using mean ± ŠD and one-way 
ANÖVA for statistical analysis. The half-maximal              
inhibitory concentration (IC50) of chloridazon-
loaded alginate-chitosan nanocapsules was                 
determined through a non-linear regression curve-fit 
analysis. All analyses were conducted using 
GraphPad Prism ver 8.0 (Šan Diego, CA, UŠA). A            
confidence level of 95% was considered for all tests, 
and a P-value below 0.05 was deemed significant. 

 

 

RESULTS 
 

Characterization of Chloridazon-Loaded Alginate-
Chitosan Nanocapsules  

As previously mentioned, the chloridazon-loaded 
nanocapsules were synthesized in our previous 
study. Characterization of these nanocapsules          
revealed an average size of 253 nm and a                         
polydispersity index (PDI) of 0.266. The zeta                 
potential value obtained was -1.43 mV. In our               
previous study, the drug loading of the synthesized 
nanocapsules was found to be 14% with an                  
encapsulation efficiency of 57%. Furthermore, our 
measurements demonstrated that the highest release 
amount (65%) occurred within the first 5 hours,          
followed by a stable release rate over the next 40 
hours (25). 

 

Measurement of cell viability by MTT assay 
The MTT assay is a colorimetric assay used to 

measure cellular metabolic activity, serving as an 
indicator of cell viability, proliferation, and                     
cytotoxicity. The number of viable 4T1 cells                    
significantly decreased in a dose-dependent manner 
when treated with chloridazon-loaded nanocapsules 
at concentrations ranging from 20 to 200 μg/ml       
compared to the control group. Additionally, the 
group treated with technical chloridazon exhibited a 
significant difference compared to the control group 
(P < 0.05, figure 1). Conversely, the blank                    
chitosan-alginate nanocapsules did not show                
significant differences in cell viability compared to 
the control group. Notably, the concentration of 100 
μg/ml of chloridazon-loaded nanocapsules had a  
similar effect to that of technical chloridazon (100 
μg/ml). Although the difference between these two 
treatment groups was not statistically significant, the 
data indicated that the group treated with          

chloridazon-loaded nanocapsules (100 μg/ml) had a 
lower average number of viable cells in the assay 
(average cell viability for technical chloridazon was 
22.79 ± ŠD, while for the 100 μg/ml chloridazon-
loaded nanocapsules was 19.89 ± ŠD). The concentra-
tion of 200 μg/ml of chloridazon-loaded nanocapsules 
had a significant effect on decreasing cell viability. 
The blank alginate-chitosan nanocapsules did not 
exhibit a significant cytotoxic effect. The IC50 index, 
representing the concentration of a drug causing 50% 
inhibition of a biological process or activity, was               
determined to be 74 μg/ml for the chloridazon-
loaded nanocapsules, based on the dose-response 
curve obtained from testing the biological effect of 
different concentrations of the chloridazon-loaded 
alginate-chitosan nanocapsules on the 4T1 cell line. 

 
 
 
 
 
 

Measurement of cell vitality by neutral red (NR) 
Assay 

The vitality of 4T1 cancer cells treated with                  
different concentrations of chloridazon-loaded          
alginate-chitosan nanocapsules, blank chitosan-
alginate nanocapsules (100 μg/ml), and technical 
chloridazon (100 μg/ml) was measured using the 
Neutral Red (NR) assay. The results were similar to 
the MTT assay in this study. The control group 
showed a significant difference compared to the              
technical chloridazon (P < 0.05, figure 2). The                  
concentrations of chloridazon-loaded nanocapsules 
(20-200 μg/ml) had a significant difference compared 
to the control group. The 10 μg/ml concentration of 
chloridazon-loaded nanocapsules also had a                   
significant difference compared to the control group. 
The 200 μg/ml concentration of chloridazon-loaded 
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Table 1. List of designed primers. 

Figure 1. Measurement of cell viability by MTT assay in 4T1 
cancer cells treated with different concentrations of              

chloridazon-loaded nanocapsules, blank nanocapsules (100 
μg/ml), and technical chloridazon (100 μg/ml). The viable cell 
number at the 20 – 200 μg/ml concentrations of treatment 
chloridazon-loaded nanocapsules groups, was significantly 
decreased in a dose-dependent manner compared to the  
control group. (Blank-AG/CS- NCs: blank chitosan-alginate 

nanocapsules, Chl-AG/CS-NCs: chloridazon-loaded alginate-
chitosan nanocapsules). The data represent the mean ± SD 

from three independent experiments. *P < 0.05. 
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nanocapsules had a more pronounced cytotoxic effect 
compared to the technical chloridazon. The blank 
chitosan-alginate nanocapsules did not exhibit a            
significant cytotoxic effect (P < 0.05). 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

Measurement of cell apoptosis using AO and PI  
The cytotoxic effect of different concentrations of 

chloridazon-loaded alginate-chitosan nanocapsules 
and technical chloridazon on 4T1 cells was evaluated 
using AÖ and PI staining. AÖ stains live cells with 
green fluorescence, while PI stains apoptotic cells 
with red fluorescence. The treated 4T1 cells revealed 
apoptosis stages (figure 3). There was a significant 
difference between the control group and the 
chloridazon-treated groups. Additionally, there was a 
significant difference between the control group and 
all the treatment groups (P < 0.05, figure 4).              
However, there was no significant difference                  
between the group treated with the technical 
chloridazon and those treated with the 100 μg/ml 
concentration of chloridazon-loaded nanocapsules. 
The 160 μg/ml concentration of chloridazon-loaded 
nanocapsules had a more pronounced effect on               
inducing apoptosis. The blank chitosan-alginate 
nanocapsules did not significantly affect apoptosis 
induction (P < 0.05). 

 

Measurement of the cell metastasis and                    
angiogenesis by real-time PCR 

The RNA expression levels of MMP-2, MMP-9 
genes (markers for metastasis rate), and VEGF-A 
gene (a marker for angiogenesis rate) in 4T1 cells 

treated with different concentrations of                   
chloridazon-loaded alginate-chitosan nanocapsules 
were measured using real-time PCR. 

The results of the MMP-2 expression level               
analysis showed a significant difference between the 
control group and all the treatment groups, except 
for the group treated with blank alginate-chitosan 
nanocapsules. However, no significant difference was 
observed between the concentration of 100 μg/ml of 
chloridazon-loaded alginate-chitosan nanocapsules 
and technical chloridazon (100 μg/ml) (P < 0.05,  
figure 5). Šimilar results were obtained for the              
analysis of MMP-9 expression levels (figure 6). When 
comparing the effects of the 100 μg/ml and 160 μg/
ml concentrations of chloridazon-loaded alginate-
chitosan nanocapsules on the RNA expression levels 
of MMP-2 and MMP-9 genes, no significant difference 
was observed (p < 0.05). 
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Figure 2. Measurement of cell vitality by natural red (NR)          
assay in 4T1 cancer cells treated with different concentrations 
of chloridazon-loaded nanocapsules, blank nanocapsules (100 

μg/ml), and technical chloridazon (100 μg/ml). All                       
concentrations of the treatment chloridazon-loaded           

nanocapsules in a dose-dependent manner significantly have a 
difference with the control group. The 200 μg/ml                   

concentration of chloridazon-loaded nanocapsules had a more 
pronounced cytotoxic effect. (Blank-AG/CS- NCs: blank             

chitosan-alginate nanocapsules, Chl-AG/CS-NCs:                      
chloridazon-loaded alginate-chitosan nanocapsules). The data 

represent the mean ± SD from three independent                     
experiments. *P < 0.05. 

Figure 3. Fluorescent microscopic image of 4T1 cells treated 
with chloridazon-loaded alginate-chitosan nanocapsules (80 

μg/ml). Stages of apoptosis were shown in the image. 

Figure 4. Measurement of the cell apoptosis using AO and PI 
in 4T1 cancer cells treated with different concentrations of 
chloridazon-loaded nanocapsules, blank nanocapsules (100 
μg/ml), and technical chloridazon (100 μg/ml). There was a 
significant difference between the control group and all the 

chloridazon-loaded nanocapsules treatment groups in a           
dose-dependent manner. The 160 μg/ml concentration of 
chloridazon-loaded nanocapsules had a more pronounced 

effect on inducing apoptosis. (Blank-AG/CS- NCs: blank             
chitosan-alginate nanocapsules, Chl-AG/CS-NCs: chloridazon-
loaded alginate-chitosan nanocapsules). The data represent 
the mean ± SD from three independent experiments. *P < 

0.05. 
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In terms of VEGF-A expression level analysis, the          
control group showed a significant difference from all 
the groups treated with chloridazon-loaded   
nanocapsules and technical chloridazon (P < 0.05, 
figure 7). There was no significant difference                  
between the groups treated with technical                  
chloridazon and the concentrations of 100 μg/ml and 
160 μg/ml of chloridazon-loaded nanocapsules.        
Additionally, the group treated with blank               
alginate-chitosan nanocapsules did not show a       
significant difference compared to the control group 
(P < 0.05).  

744 Int. J. Radiat. Res., Vol. 22 No. 3, July 2024 

Figure 5. The mRNA expression levels of MMP-2, in the 4T1 
cancer cells treated with different concentrations of chlorida-

zon-loaded nanocapsules, blank nanocapsules (100 μg/ml), 
and technical chloridazon (100 μg/ml). The control group was 

significantly different from all the chloridazon-loaded 
nanocapsules treatment groups and also dose-dependent 

effects are evident in the treatment groups. (Blank-AG/              
CS- NCs: blank chitosan-alginate nanocapsules, Chl-AG/CS-

NCs: chloridazon-loaded alginate-chitosan nanocapsules). The 
data represent the mean ± SD from three independent             

experiments. *P < 0.05. 

Figure 6. The mRNA expression levels of MMP-9, in the 4T1 
cancer cells treated with different concentrations of               

chloridazon-loaded nanocapsules, blank nanocapsules (100 
μg/ml), and technical chloridazon (100 μg/ml). The control 
group was significantly different from all the chloridazon-

loaded nanocapsules treatment groups and also dose-
dependent effects are evident in the treatment groups. (Blank
-AG/CS- NCs: blank chitosan-alginate nanocapsules, Chl-AG/CS
-NCs: chloridazon-loaded alginate-chitosan nanocapsules). The 

data represent the mean ± SD from three independent             
experiments. *P < 0.05. 

Figure 7. The mRNA expression levels of VEGF-A, in the 4T1 cancer cells 
treated with different concentrations of chloridazon-loaded               

nanocapsules, blank nanocapsules (100 μg/ml), and technical chloridazon 
(100 μg/ml). The control group was significantly different from all the 

chloridazon-loaded nanocapsules treatment groups and also dose-
dependent effects are evident in the treatment groups. There was no 

significant difference between the groups treated with technical chlorida-
zon and the concentrations of 100 μg/ml and 160 μg/ml of chloridazon-

loaded nanocapsules. (Blank-AG/CS- NCs: blank chitosan-alginate 
nanocapsules, Chl-AG/CS-NCs: chloridazon-loaded alginate-chitosan 

nanocapsules). The data represent the mean ± SD from three                  
independent experiments. *P < 0.05. 
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DISCUSSION 
 

In current research, medicinal nanocarriers               
composed of alginate and chitosan polymers hold 
promise for facilitating the treatment of various               
diseases. In this study, we utilized these polymers for 
chloridazon nanoencapsulation. The synergy of             
alginate with chitosan lies in the carboxylic acid 
groups on the surface of the alginate polymer chain, 
which confer negative charges to alginate.                      
Consequently, it can electrostatically interact with 
positively charged molecules such as chitosan to form 
a gel. The formation of nanoparticles is rapid due to 
the spontaneous diffusion of the polymer solution in 
the aqueous phase, as they endeavor to avoid water 
molecules. Alongside the solvent diffusion from the 
nanoparticles, the polymer is deposited in the form of 
nanocapsules (16). McMillan et al. (2011) indicated in 
their study that the shape and size of nanoparticles 
influence their interactions with cells, thereby              
impacting their distribution, toxicity, and ability to 
target cells (28). Furthermore, it has been observed 
that nanoparticles with a size of 100 nm exhibit 2.5 
times greater cellular absorption and 6 times better 
absorption compared to particles with a diameter of 
1 µm, and 10 µm particles, respectively (29). The               
average size of our synthesized chloridazon-loaded 
alginate-chitosan nanocapsules was 253 nm, which is 
a good size for nanocarriers. Additionally, PDI values 
close to 0.2 are generally deemed acceptable for            
polymer-based nanoparticles in practical applications 
(30). Meanwhile, the PDI of our synthesized               
nanocapsules was equal to 0.266 which indicates a 
colloidal suspension and an acceptable homogeneous 
size distribution. The negative surface charge (-1.4 
mV) of chloridazon-loaded nanocapsules denotes the 
acceptable stability of the formulated nanocapsules. 
The negative surface charge of the formulated 
nanocapsules can be attributed to a higher                  
proportion of alginate than chitosan in their                 
structure. This negative charge helps to mitigate            
accumulation and maintain the colloidal structure of 
the chloridazon-loaded nanocapsules. However, it is 
insufficient to prevent interaction with the surface of 
cells, which are negatively charged due to the                 
presence of membrane phospholipids. 

Öur results, following prior research,                     
corroborated the potential of alginate-chitosan 
nanocapsules for drug delivery and controlled release 
(31-34). It is worth noting that our results, supported by 
the obtained data and statistical analysis, affirmed 
the non-toxicity of the alginate-chitosan co-polymer 
at the nanostructure scale on the biological activities 
of the 4T1 cells. This finding is consistent with              
numerous previous studies that underscore the             
biocompatible, non-toxic, and biodegradable                  
characteristics of these polymers (35-41). In our study, 
we anticipated a higher release of chloridazon during 
the initial hours of release (65%) due to the faster 

degradation of alginate compared to chitosan in the 
environment. As documented in our previous study, 
the complete release of chloridazon occurred within 
40 hours (25). This relatively rapid release of                
chloridazon in a neutral pH aqueous solvent can be 
attributed to the greater solubility of alginate                  
compared to chitosan in an aqueous medium.               
Notably, chitosan exhibits its highest solubility in 
acidic environments (42), while alginate is highly             
soluble in aqueous environments (43). In numerous 
studies focusing on alginate-chitosan nanocarriers, 
the promising potential of this type of drug carrier 
has been highlighted. Li. X et al. (2022) utilized              
alginate-chitosan nanocarriers for successful oral 
mucosal antigen delivery (44). Šimilarly, in another 
study, Bahreini et al. (2014) employed chitosan 
nanocarriers for the delivery and controlled release 
of L-asparaginase enzyme protein, used in the              
treatment of acute lymphoblastic leukemia (45).             
Consistent with previous research, our study results 
affirmed the effectiveness of alginate-chitosan 
nanocapsules for drug delivery and controlled release 
(46, 47). 

The controlled release of chloridazon during the 
treatment period led to increased cytotoxic effects. 
The MTT assay revealed that the viability of the 4T1 
cells decreased at each concentration of chloridazon-
loaded nanocapsules, in accordance with the released 
doses during the controlled chloridazon release             
process, as compared to the control group (figure 1). 
The duration of the MTT assay treatment was 24 
hours, which might have resulted in the 4T1 cells not 
being fully exposed to all the chloridazon loaded in 
the nanocapsules. Environmental conditions and the 
biological characteristics of the cultured cell line 
should also be taken into account in this context. As 
anticipated, and in line with the biocompatibility 
characteristics of alginate and chitosan polymers, the 
blank alginate-chitosan nanocapsules exhibited no 
significant cytotoxic effects. The NR assay,                       
comparable to the MTT assay, indicated that the           
vitality of the 4T1 cells was dose-dependent at                 
any concentration of the chloridazon-loaded               
nanocapsules (figure 2). Furthermore, an                      
examination of the expression level of genes                  
associated with metastasis and angiogenesis revealed 
a clear, dose-dependent reduction in gene expression, 
especially in the case of VEGF-A, with increasing             
concentrations of nanocapsules containing                
chloridazon (figure 7). 

Chloridazon is a member of the pyridazinones 
family, which are utilized as anti-cancer, anti-tumor, 
and anti-inflammatory agents today (48-52). In a study 
by Murineddu et al. (2002), the synthesis and in vitro 
assessment of compounds 1-Methyl-2-phenyl (1) and 
1,3-dimethyl-2-phenyl (2)-substituted pyrrole (2,3-d) 
pyridazinones against 60 human tumor cell                    
lines  derived from 9 types of cancer cells revealed 
that the antitumor activities of pyridazinone-derived          

Kahrizi et al. / Cytotoxicity of Chloridazon on 4T1 cell line  745 

 [
 D

O
I:

 1
0.

61
18

6/
ijr

r.
22

.3
.7

39
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 m
ai

l.i
jr

r.
co

m
 o

n 
20

26
-0

2-
20

 ]
 

                             7 / 10

http://dx.doi.org/10.61186/ijrr.22.3.739
https://mail.ijrr.com/article-1-5658-en.html


compounds are associated with the flatness of the 
pyridazinone ring. The synthesized compounds        
exhibited robust antitumor activity and significant 
cytotoxicity (53). Another study by Gutierrez et al. 
(2019) assessed the potential anticancer properties 
of a new pyridazinone derivative and identified it as a 
potential antineoplastic agent in acute promyelocytic 
leukemia cells. The Pyr-1 compound demonstrated 
potent cytotoxicity against 22 human cancer cell lines 
with selective cytotoxicity against leukemia, breast, 
and lung cancer cell lines. Furthermore, Pyr-1              
induced apoptosis in acute promyelocytic leukemia 
cells, as corroborated by phosphatidylserine                 
externalization, mitochondrial depolarization,              
caspase - 3 activation, DNA fragmentation, and               
disruption of cell cycle progression. Additionally,           
Pyr-1 was found to induce oxidative and proteotoxic 
stress by stimulating the accumulation of reactive 
oxygen species (RÖŠ), consequently leading to               
overexpression of hmox-1 mRNA and stress-related 
protein transcripts, along with a significant increase 
in polyubiquitinated proteins. The results indicated 
that Pyr-1 triggers cell death through the intrinsic 
apoptosis pathway by accumulating RÖŠ and              
disrupting proteasome activity (54). 

Regarding chloridazon, its nanoencapsulation was 
found to enhance its cytotoxic effects. When                 
compared to the treatment of 4T1 cells with technical 
chloridazon (100 μg/ml), which significantly                  
decreased cell viability in the MTT assay, the IC50 of 
chloridazon-loaded nanocapsules was 74 μg/ml. The 
potentially increased cytotoxicity could be attributed 
to factors such as reduced particle size, modification 
of particle surface properties, and enhanced drug 
stability. Ševeral factors can influence the IC50 of 
drug-loaded nanocapsules, including the drug                
loading percentage, nanocapsule size, nanocapsule 
morphology, nanocapsule surface charge, drug dose, 
pharmacokinetic properties of the drug, and              
environmental factors affecting the release rate (55,56). 
In the case of the chloridazon-loaded nanocapsules 
used in this study, parameters such as negative               
surface charge, drug loading percentage, increased 
bioavailability, and chloridazon release timeline                
appear to be among the most influential factors               
affecting the IC50 of the formulated nanocapsules. 

In investigating the biological effects of                  
chloridazon, three important properties of               
chloridazon were found to be influential in its                
anti-cancer effect against 4T1 cells, a trait shared 
with other compounds of the pyridazinone family. 
Firstly, chloridazon tends to interact with ds-DNA, 
leading to a reduction in the replication index and a 
delay in genomic replication. The interaction of 
chloridazon with DNA is dependent on the base             
sequence of DNA, with a greater interaction observed 
through the GC base sequence (18,57). Šecondly, 
chloridazon possesses the ability to interact with 
phospholipids in the outer leaflet of the cell’s plasma 

membrane, potentially causing cell damage by               
affecting the phosphatidylcholines of the outer             
membrane (58). Lastly, chloridazon, like many                 
pyridazinone derivatives, exhibits a planar spatial 
structure (19), which contributes to its effectiveness. 

There are many genetic, biochemical,                      
physiological, and epigenetic findings related to 
breast cancer (59-80). 

In conclusion, the results of our study shed light 
on key aspects, including the lack of cytotoxicity of 
the alginate/chitosan polymers and the high potential 
of the alginate-chitosan nanocapsules for the delivery 
and release of chloridazon. Furthermore, our                
experimental data suggest that chloridazon, as a 
member of the pyridazinone family, holds potential 
for pharmacological applications against breast             
cancer cells. Nonetheless, validation of our findings 
would require in vivo studies and clinical trials. 

 

Recommendation 
In the continuation of this study, we propose that 

expert researchers in this field explore the potential 
intervening effect of chloridazon-loaded alginate-
chitosan nanocapsules on the outcomes of                     
radiotherapy or chemotherapy. This investigation 
aims to examine how the application of these 
nanocapsules can influence the effectiveness and         
efficacy of radiotherapy or chemotherapy treatments. 
By delving into this aspect, researchers can gain            
valuable insights into the potential benefits and            
limitations of utilizing Chloridazon-Loaded              
Alginate-Chitosan Nanocapsules as a means of                 
enhancing the outcomes of cancer treatments. 
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