
INTRODUCTION 

 

rachytherapy, the treatment of cancer 

patients by placing sealed radioactive 

elements at the short distances relative 

to the tumor, was born soon after Henri  

Becquerel’s discovery of radioactivity in Paris 

(1896) and Marie Curie’s discovery of radium 

(1898). However, within the past several years 

there have been great improvements in the  

technical aspect of the brachytherapy proce-

dures (Blasko and Grimm 1993, Blasko et al. 

1995, Grimm et al. 1994, 2001), and better un-

derstanding in the radiobiological aspect of low 

dose rate radiation (Brenner and Hall 1991, Orton 

1993) have helped us to advance in this treat-

ment modality. Moreover, development of the 

protocols regarding the dosimetric characterization 

of the brachytherapy sources (Nath et al. 1995, 

Williamson et al. 1998) and development of 

treatment-planning systems, which could incor-

porate the CT, MRI and Ultrasound images for 

the 3D dose calculations (Schoeppel et al. 1993, 

Ling et al. 1987), have further improved this 

field. These advancements have lead to the clini-

cal results, which are superior or at least compara-

ble to the other treatment modalities for cancer 

patients. In this presentation the advancement of 

the brachytherapy source dosimetry is being  

reviewed. 

Reviewing the brachytherapy data prior to 

1995 indicates a large variation of the dosimetric 

characteristics of sources, due to the inconsistency 

in technique of the dosimetry or use of various 
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dosimeters and phantom materials. For example, 

in 1975, Hilaris et al. have measured the dose 

rate constant of 125I, Model 6701, to be 1.68 

cGy.cm2/mCi.hr. However, in the same year, 

Anderson et al. (1975) have found a dose rate 

constant of 1.3 cGy.cm2/mCi.hr for 125I, Model 

6701, using the point source approximation. 

Moreover, Holt et al. (1975) measured a value 

of 1.03 cGy.cm2/mCi.hr using a spherical ioni-

zation chamber, and Anderson and Ding (1975), 

measured a value of 1.18 cGy.cm2/mCi.hr using 

TLD measurement in plastic. These results were 

indicating more than 60% differences in dose 

rate constant of the same source within one 

year. These differences were attributed to the 

differences in the phantom material, dosimeters, 

as well as the dosimetry techniques, particularly 

for low energy photon emitter sources. 

In 1995, the AAPM (American Association 

of Physicists in Medicine) Task Group 43 (Nath 

et al. 1995) has introduced a protocol which has 

minimized the large variation of the dosimetric 

information determined by various investigators 

around the world. Using this recommendation, 

dosimetric characteristics (dose rate constant, ra-

dial dose function, anisotropy function, and ani-

sotropy factors) of several new designs of 125I 

and 103Pd brachytherapy sources have been de-

termined and published by various investigators. 

These characterizations were performed using 

experimental and Monte Carlo simulation tech-

niques. This protocol has introduced a universal 

dosimetry technique for the brachytherapy 

sources, which is briefly described in the following 

sections. 

 

TG-43 Recommendation for brachytherapy 

dosimetry 

Characteristics of a brachytherapy source 

could be determined using both experimental 

and theoretical methods following the AAPM 

recommendations published in the TG-43 report 

(Nath et al. 1995). Following this protocol, the 

dose distribution around a sealed brachytherapy 

source can be determined using the following 

formalism: 

Where 

 Λ is the dose rate constant 

 G(r, θ) is the geometry function 

 g(r) is the radial dose function 

 F(r, θ) is the anisotropy function 

The above quantities are defined and  

discussed in detail in TG-43 report. However, they 

are briefly reviewed here with our technique of 

measurement. 

 

Dose rate constant 

The dose rate constant, Λ, is defined as the 

dose rate per unit air-kerma strength at a reference 

point along the transverse axis of the source.  

This value is expressed in units of cGy.h–1U-1, 

where U is the unit of air-kerma strength of the 

source and is defined as 1U=1µGym2/h-1=1 

cGycm2/h-1. The dose rate constant of the source 

is measured using LiF TLDs in Solid WaterTM 

(water equivalent phantom material) and calcu-

lated using Monte Carlo simulation technique in 

water and Solid WaterTM as: 

 

Radial Dose Function, g(r) 

Radial dose function, g(r), describes the  

attenuation in tissue of the photons emitted from 

a brachytherapy source. Radial dose function is 

defined as: 

Where  (r, π/2) and  (r0, π/2) are the dose 

rates measured at distances of r and r0, respec-

tively, along the transverse bisector of the 

source. r0 is the reference distance and usually is 

defined to be 1 cm, as is the case for this pro-

ject. G(r, θ) is known as the geometry function 

which takes into account the effect of the physi-
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cal shape of the radioactive material inside the 

source on the dose distribution at a given point. 

The geometry function is defined by the AAPM 

(Nath et al. 1995) as: 

Where L is the active length of the source as 

shown in figure 1.  

A. Anisotropy Function, F(r, θ) 

The anisotropy function, F(r, θ), describes 

the variation in dose distribution around a 

brachytherapy source due to self-absorption and 

oblique filtration of radiation in the capsule  

material. The anisotropy function is defined as: 

Where  (r, θ) and  (r, π/2) are the dose 

rates measured at distances of r and angles of θ 

and π/2 relative to the longitudinal axis of the 

source, respectively. The anisotropy factor, φan 

(r), is defined following the TG-43 recommen-

dations as: 

The anisotropy constant, φan, of the new 

source was determined by averaging the individ-

ual anisotropy factors in a given medium. 

 

TLD dosimetry technique 

Dose distributions around the brachytherapy 

sources are normally measured in a Solid WaterTM 

phantom material (Model 457, Radiation Meas-

urements Inc., RMI, Middletown, WI) using 

TLD-100 LiF thermoluminescent dosimeters 

(Harshaw/Bicron 6801 Cochran Rd., Solon, OH 

44139). For these measurements, slabs of Solid 

WaterTM phantom material are machined to  

accommodate the source and LiF chips of  

dimensions (3.1 × 3.1 × 0.8 mm3) and (1.0 × 1.0 × 

1.0 mm3). Figure 2 shows the schematic diagrams 

of two samples of experimental setup for meas-

urements of the dose rate constant and radial dose 

function at University of Kentucky (2A) 

(Meigooni et al. 2002a) and University of Wiscon-

sin (2B) (Peterson and Thomadson 2002). The 

specially designed patterns of the TLD locations 

were selected to minimize the interference of 

any one TLD to the other TLD chips. 

Figure 3 shows the phantom design that was 

used for the measurement of the anisotropy 

function at University of Kentucky (Meigooni et 

al. 2002a) while the phantom design shown in 

Figure 2B is used at university of Wisconsin 

(Peterson and Thomadson 2002). 

The TLD measurements are performed by 

surrounding the source and the TLD chips with 

at least 10 cm of phantom material to provide 

full scattering conditions. TLDs are then read 

using a TLD reader and responses are converted 

into dose using the following equation 

(Meigooni et al. 1995).  

Where  (r, θ) is the dose rate to water in 

the medium of measurement at a given distance 

and angle relative to the longitudinal axis of the 

source. R is the TLD response, corrected for 
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Figure 1. Schematic diagram of the source orientation and 

point of interest, P(x,y).  
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background and the physical differences between 

individual TLDs of the same batch (Meigooni et 

al. 1995), T is the experimental time (hours), Sk 

is the source air-kerma strength at the beginning 

of the measurement. e is the calibration factor 

for the TLD response (nC/cGy) measured with a 

6 MV X-ray beam from a linear accelerator. E

(r) is a correction factor for the energy depend-

ence of the TLD response between the calibra-

tion beam and the brachytherapy source. dT is a  

correction factor used to account for the decay 

of the source during irradiation. Flin is the 

nonlinearity correction of the TLD response for 

the given dose. 

 

Monte Carlo Simulations 

The Monte Carlo simulation has become an 

invaluable technique in the characterization of 

new brachytherapy sources within the last several 

years. Presently several Monte Carlo codes, such 

as MCNP, PTRAN and EGS4 are commonly used 

for dosimetric characterization of the brachy-

therapy sources (Williamson 1987, 1988).  

These codes simulate the interactions as emitted 

from the source until they are exited from the 

phantom or their energy is fully absorbed. The 

photon cross section library used in this code 

was DLC-200) (DLC = Data Library Code) is 

distributed by the Radiation Shielding Information 

Computing Center (RSICC) (Roussin et al. 

1983). Also, this code uses the corresponding 

mass-energy absorption coefficients by Hubbell 

and Seltzer (1995), for converting energy fluence 

into absorbed dose. The Monte Carlo code allows 

the simulation in various phantom material,  

particularly the liquid was in which the experi-

mental procedure is either impossible or it is 

really difficult. The simulation in air will provide 

the air kerma strength, which is currently the 

103Pd SourceA removeable part 
for different sources

1 x 1 x 1 mm 3 
LiF TLD Chips

0o

90 o

180 o

270 o

Figure 3. The schematic diagram of the experimental 

setup for measurements of anisotropy functions at  

University of Kentucky.  

103
Pd Source

1 x 1 x 1 mm
3
 TLD

3.1 x 3.1 x 0.9 mm
3
 TLD

Figure 2. Schematic Diagram of the experimental setup at University of Kentucky (A) and Schematic  

Diagram of the experimental setup at University of Wisconsin (B).  
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used in brachytherapy dosimetry in place of 

source activity.  

 
RESULTS AND DISCUSSION 

 
Reviewing the recent dosimetry of the 

brachytherapy sources performed by various 
investigators (Meigooni et al. 2000, 2001, 
2002b, Wallace and Fan 1999a & b, Weaver 
1998, Williamson 2000, Li et al. 2000, Rivard 
2001, Wallace 2000, Nath and Yue 2000, 
Karaiskos et al. 2001, Kirov and Williamson 
2001, Reiners et al. 2001) following the TG-43 
recommendation for various brachytherapy 
sources shows the following results. 

a. Dose rate Constant: Table 1 shows a 
comparison of the measured and Monte 
Carlo calculated dose rate constants of 
several different types of 125I, by various 
investigators, following the TG-43 protocol. 
These results show that there is a good 
agreement between different investigators 
on the same source. Moreover, different 

investigators have shown the same impact 
of the source geometry on the dose rate 
constant of different source models from 
the same isotope. 

b. Radial Dose Function: Figure 4 shows a 
comparison between the measured and 
Monte Carlo simulated radial dose function 
of a 125I source (Meigooni et al. 2002c). 
This figure indicates a good agreement 
between the two methods of dosimetry.  
Therefore, knowing the accurate source 
geometry, one could reproduce the experi-
mental data using Monte Carlo simulation 
technique. Figure 5 shows a comparison 
between the radial dose functions of various 
models of 125I brachytherapy sources, in 
water. This figure indicates that the fol-
lowing the TG-43 protocol will lead to a 
consistent result for the radial dose function 
of the brachytherapy sources. Similar  
consistent results were observed for other 
brachytherapy sources such as 103Pd and 
192Ir. 

Table 1. Measured or calculated dose rate constants, Λ, of 125I and 103Pd brachytherapy sources in water. 

Source and Model, 
125
I 

Dose Rate Constant, Λ 

(cGy*cm
2
/hr*U) 

Source of Data Reference 

Model 6702 1.037 

1.039 

TG-43 

Monte Carlo 

(Nath et al. 1995) 

(Williamson, 1991) 

Model 6711 0.981 

0.978 

TG-43 

Monte Carlo 

(Nath et al. 1995) 

(Williamson, 1991) 

MED3631A/M 1.060 

1.083 

1.067 

TLD 

TLD 

Monte Carlo 

(Wallace and Fan ,1999) 

(Li et al. 2000) 

(Rivard et al. 2001) 

InterSource125 1.065 

1.013 

1.050 

1.020 

TLD 

Monte Carlo 

TLD 

Monte Carlo 

(Meigooni et al. 2002a) 

(Meigooni et al. 2002a) 

(Reniers et al. 2001) 

(Reniers et al. 2001) 

SelectSeed 0.954 Monte Carlo (Karaiskos et al. 2001) 

I-Plant, Model 3500 1.010 TLD (Duggan and Johnson, 2001) 

Source and Model, 
103
Pd 

Dose Rate Constant, Λ 

(cGy*cm
2
/hr*U) 

Source of Data Reference 

Model 200 
0.680 

0.650 

Monte Carlo 

TLD 

(Williamson, 2000) 

(Nath and Yue, 2000) 

MED3633 

0.680 

0.677 

0.682 

TLD 

Monte Carlo 

Diode 

(Wallace and Fan, 1999) 

(Li et al. 2000) 

(Li et al. 2000) 
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c. Radial Dose Function: Figure 6 shows a 

comparison between the measured and 

Monte Carlo simulated anisotropy functions 

of a 125I source (Meigooni et al. 2002c). 

This figure indicates a good agreement 

between the two methods of dosimetry. 

Figure 7 shows a comparison between the 

anisotropy functions of various models of 

125I brachytherapy sources, in water. This 

figure indicates that the following the TG-

43 protocol will lead to a consistent result 

for the radial dose function of the brachy-

therapy sources. The differences between 

the anisotropy functions at the small angles 

are attributed to the shape and sizes of the 

end caps. Table two shows the anisotropy 

Figure 4. Comparison between the Monte Carlo  

simulated and measured radial dose function of 125I 

source (Meigooni et al. 2000).  

Figure 5. Comparison between the radial dose function 

of different commercially available 125I sources.  

Figure 6. Comparison between the Monte Carlo simulated 

and measured anisotropy function of 125I source  

(Meigooni et al. 2000).  

Figure 7. Comparison between the anisotropy functions 

of different commercially available 125I sources.  
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factors at different radial distances and 

anisotropy constants of the commercially 

available 125I and 103Pd sources. 

 

CONCLUSION 

 

The TG-43 protocol has introduced a rec-

ommendation and formalism that leads to a con-

sistent brachytherapy dosimetry. Moreover, 

these dosimetric parameters are easily measur-

able today and can be produced using the 

Monte Carlo simulation technique. The varia-

tion of the dosimetric parameters of a given 

source by different investigators is less than 5% 

as compared to the 60% variation before TG-

43. This consistency of determination of dose 

distribution around the brachytherapy sources 

along with improvement in the technological 

aspect of the brachytherapy procedures leads to 

a better and more promising clinical results for 

cancer patients. 

It is good to know that an updated TG-43 

has recently become available (Rivard et al. 

2004) to cover the short coming of this recom-

mendation as listed below: 

 

a. During the process of the brachytherapy 

source dosimetry, it has been found that 

the Monte Carlo simulated anisotropy 

function was highly sensitive to the thick-

ness and depth of the active layer within 

the source. This parameter was not al-

ways accurately known by the vendors, 

therefore, some investigators selected the 

thickness of the active layer to match ex-

perimental data. The effect of the active 

layer thickness on the TG-43 dosimetric 

parameters of a sample source will be 

presented in order to justify that the 

Monte Carlo simulated data by itself is 

not sufficient for clinical application. 

b. Several investigators have argued that the 

geometric function of the source, G(r, 

theta), as defined in the TG-43 report was 

not applicable for some source designs. 

For instance, the active length of a source 

with a long active wire cannot be defined 

in the same way as a source with active 

beads at each end. Some investigators 

proposed a Monte Carlo simulated geo-

metric function; however, no analytical 

method is available at this time. With these 

Table 2. Anisotropy factors, φan(r) and anisotropy constant, φan of 125I and 103Pd brachytherapy sources. 

Model and 

Source 

0.75 

cm 

1.0 

cm 

2.0 

cm 

3.0 

cm 

4.0 

cm 

5.0 

cm 

6.0 

cm 

7.0 

cm 
φan 

Model 6702  0.960 0.952 0.951 0.954 0.954   0.960* 

Model 6711  0.944 0.941 0.942 0.943 0.944   0.948* 

MED3631 A/M 0.965 0.952 0.945 0.946 0.947 0.948   0.948 

InterSource125  0.959 0.947 0.983 0.943 0.949 0.949 0.965 0.956 

selectSeed  0.933 0.936 0.941 0.943 0.945 0.946  0.936 

BT-125-I  0.976 0.973 0.970  0.968  0.964 0.975 

Best 125I   0.990   0.988  0.970 0.982 

Model 200  0.866 0.862 0.868 0.871 0.872   0.872* 

InterSource103  0.901 0.891 0.889  0.892  0.889 0.894 

MED3633  0.927 0.919 0.916 0.927 0.917   0.921 

Best 103Pd  0.895 0.869 0.880 0.877 0.886 0.907 0.841 0.880 

* The anisotropy constants were calculated as the mean value of the anisotropy factors.  
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and other shortcomings in AAPM brachy-

therapy dosimetry techniques, a review and 

revision of the TG-43 protocol is war-

ranted to include newer source designs.  
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