[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

Volume 23, Issue 3 (7-2025)                   Int J Radiat Res 2025, 23(3): 721-730 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Li W, Zhang J, Li Y, Xu L, Son Q, Wang J. The dual role of lncRNA-mRNA regulatory network in reshaping the tumor microenvironment and radiotherapy response in pancreatic ductal adenocarcinoma. Int J Radiat Res 2025; 23 (3) :721-730
URL: http://ijrr.com/article-1-6664-en.html
Department of Oncology and Radiotherapy, Wuhan General Hospital of Guangzhou Military Command, Wuhan, 430070, Hubei Province, China , 12299079@qq.com
Abstract:   (255 Views)
Background: Pancreatic ductal adenocarcinoma (PDAC) is recognized as an exceptionally aggressive malignancy with limited treatment options. Radiotherapy, particularly creotactic body radiotherapy, plays a vital role in cancer management but faces challenges due to the complex microenvironment of tumors and intrinsic resistance mechanisms. Materials and Methods: Transcriptomic data from PDAC tissue samples were analyzed pre- and post-stereotactic body radiotherapy to identify variations in the expression of  lncRNAs and mRNAs. Additionally, bioinformatics approaches were used to explore their interactions, focusing on the effects on p53-mediated apoptosis and immune cell dynamics, and to assess their potential as biomarkers for radiotherapy outcomes. Results: Genes linked to p53-driven apoptosis and DNA damage response showed significant upregulation after stereotactic body radiotherapy, highlighting the cytotoxic effects of radiotherapy. Conversely, immune-related genes were downregulated, indicating an immunosuppressive tumor microenvironment following radiotherapy. Meanwhile, co-expression analysis revealed a regulatory network between lncRNAs and mRNAs that influence radiotherapy-induced cytotoxicity and immunosuppression. Lastly, a risk model was constructed by incorporating three mRNAs (HSPA1L, MT-CYB, PMAIP1) and five lncRNAs (AC018816.3, RP11-147L13.2, CTD-2651B20.6, RP11-422P24.10, AC067945.4) to predict radiotherapy outcomes. Conclusion: This study uncovers the intricate interaction between lncRNAs and mRNAs in PDAC, especially in the context of radiotherapy. Our results demonstrated that the lncRNA-mRNA network significantly impacts the tumor microenvironment and radiotherapy response by regulating pathways involved in cell death and immunosuppression. Thus, targeting this network could enhance radiotherapy efficacy and mitigate its immunosuppressive effects, offering novel strategies to improve the treatment outcomes of PDAC.
Full-Text [PDF 1430 kb]   (96 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology

References
1. 1. Kamisawa T, Wood LD, Itoi T, Takaori K (2016) Pancreatic cancer. Lancet, 388(10039): 73-85. [DOI:10.1016/S0140-6736(16)00141-0]
2. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer Statistics, 2021. CA Cancer J Clin, 71(1): 7-33. [DOI:10.3322/caac.21654]
3. Klautke G and Brunner TB (2008) Radiotherapy in pancreatic can cer. Strahlentherapie und Onkologie, 184(11): 557. [DOI:10.1007/s00066-008-1865-8]
4. Buss EJ, Kachnic LA, Horowitz DP (2021) Radiotherapy for locally ad vanced pancreatic ductal adenocarcinoma. Semin Oncol, 48(1): 106-110. [DOI:10.1053/j.seminoncol.2021.02.005]
5. Ng SSW and Dawson LA (2022) Inflammatory Cytokines and Radio therapy in Pancreatic Ductal Adenocarcinoma. Biomedicines, 10(12): 3215. [DOI:10.3390/biomedicines10123215]
6. Bouchart C, Navez J, Closset J, Hendlisz A, Van Gestel D, Moretti L, Van Laethem JL (2020) Novel strategies using modern radiothera py to improve pancreatic cancer outcomes: toward a new stand ard? Ther Adv Med Oncol, 12: 1758835920936093. [DOI:10.1177/1758835920936093]
7. Deng D, Patel R, Chiang C-Y, Hou P (2022) Role of the tumor micro environment in regulating pancreatic cancer therapy resistance. Cells, 11(19): 2952. [DOI:10.3390/cells11192952]
8. Wang S, Li Y, Xing C, Ding C, Zhang H, Chen L, et al. (2020) Tumor microenvironment in chemoresistance, metastasis and immuno therapy of pancreatic cancer. American Journal of Cancer Re search, 10(7): 1937.
9. Guo J, Wang S, Gao Q (2023) An integrated overview of the immu nosuppression features in the tumor microenvironment of pancre atic cancer. Front Immunol, 14: 1258538. [DOI:10.3389/fimmu.2023.1258538]
10. Zhou M, Diao Z, Yue X, Chen Y, Zhao H, Cheng L, Sun J (2016) Con struction and analysis of dysregulated lncRNA-associated ceRNA network identified novel lncRNA biomarkers for early diagnosis of human pancreatic cancer. Oncotarget, 7(35): 56383. [DOI:10.18632/oncotarget.10891]
11. Zhou M, Ye Z, Gu Y, Tian B, Wu B, Li J (2015) Genomic analysis of drug resistant pancreatic cancer cell line by combining long non-coding RNA and mRNA expression profling. International Journal of Clinical and Experimental Pathology, 8(1): 38.
12. Eptaminitaki GC, Zaravinos A, Stellas D, Panagopoulou M, Karaliota S, Baltsavia I, et al. (2023) Genome-Wide Analysis of lncRNA-mRNA Co-Expression Networks in CD133+/CD44+ Stem-like PDAC Cells. Cancers (Basel), 15(4): 1053. [DOI:10.3390/cancers15041053]
13. Zhang J, Le TD, Liu L and Li J (2019) Inferring and analyzing module-specific lncRNA-mRNA causal regulatory networks in human can cer. Brief Bioinform, 20(4): 1403-1419. [DOI:10.1093/bib/bby008]
14. Mills BN, Qiu H, Drage MG, Chen C, Mathew JS, Garrett-Larsen J, et al. (2022) Modulation of the human pancreatic ductal adenocarci noma immune microenvironment by stereotactic body radiothera py. Clin Cancer Res, 28(1): 150-162. [DOI:10.1158/1078-0432.CCR-21-2495]
15. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17): i884-i890. [DOI:10.1093/bioinformatics/bty560]
16. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 12(4): 357-360. [DOI:10.1038/nmeth.3317]
17. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Bi ol, 15(12): 550. [DOI:10.1186/s13059-014-0550-8]
18. Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M (2019) Transcriptome assembly from long-read RNA-seq align ments with StringTie2. Genome Biology, 20(1): 1-13. [DOI:10.1186/s13059-019-1910-1]
19. Kong L, Zhang Y, Ye Z-Q, Liu X-Q, Zhao S-Q, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using se quence features and support vector machine. Nucleic Acids Re search, 35(suppl_2): W345-W349. [DOI:10.1093/nar/gkm391]
20. Wang G, Yin H, Li B, Yu C, Wang F, Xu X, et al. (2019) Characteriza tion and identification of long non-coding RNAs based on feature relationship. Bioinformatics, 35(17): 2949-2956. [DOI:10.1093/bioinformatics/btz008]
21. Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, et al. (2013) Utilizing se quence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Research, 41(17): e166-e166. [DOI:10.1093/nar/gkt646]
22. Wang L, Park HJ, Dasari S, Wang S, Kocher J-P, Li W (2013) CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Research, 41(6): e74-e74. [DOI:10.1093/nar/gkt006]
23. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. (2021) clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation, 2(3): 100141. [DOI:10.1016/j.xinn.2021.100141]
24. Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol, 18(1): 220. [DOI:10.1186/s13059-017-1349-1]
25. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W, et al. (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun, 4: 2612. [DOI:10.1038/ncomms3612]
26. Therneau TM and Lumley T (2015) Package 'survival'. R Top Doc, 128(10): 28-33.
27. Blanche P, Dartigues JF, Jacqmin-Gadda H (2013) Estimating and comparing time-dependent areas under receiver operating charac teristic curves for censored event times with competing risks. Stat Med, 32(30): 5381-5397. [DOI:10.1002/sim.5958]
28. Wang Y, Guo Z, Zhao Y, Jin Y, An L, Wu B, et al. (2017) Genetic pol ymorphisms of lncRNA-p53 regulatory network genes are associat ed with concurrent chemoradiotherapy toxicities and efficacy in nasopharyngeal carcinoma patients. Sci Rep, 7(1): 8320. [DOI:10.1038/s41598-017-08890-2]
29. Brosh R, Sarig R, Natan EB, Molchadsky A, Madar S, Bornstein C, et al. (2010) p53-dependent transcriptional regulation of EDA2R and its involvement in chemotherapy-induced hair loss. FEBS letters, 584(11): 2473-2477. [DOI:10.1016/j.febslet.2010.04.058]
30. Tanikawa C, Furukawa Y, Yoshida N, Arakawa H, Nakamura Y, Matsuda K (2009) XEDAR as a putative colorectal tumor suppres sor that mediates p53-regulated anoikis pathway. Oncogene, 28(34): 3081-3092. [DOI:10.1038/onc.2009.154]
31. Yu X and Wang M (2022) LINC01204 Negatively Regulates the Effect of MiR-214 on Lung Cancer Cell Apoptosis, Migration, Inva sion and Radiosensitivity. International Journal of Radiation Re search, 20(1): 15-20. [DOI:10.52547/ijrr.20.1.3]
32. Zhou Y, Bi Y, Wan M, Xu N, Xu Y, Liu P, et al. (2024) The role of m6A-related lncRNAs on prognosis and chemoradiothrapy re sponse of osteosarcoma: potential molecular pathways. Interna tional Journal of Radiation Research, 22(2): 457-465. [DOI:10.61186/ijrr.22.2.463]
33. Zhan DT and Xian HC (2023) Exploring the regulatory role of lncRNA in cancer immunity. Front Oncol, 13: 1191913. [DOI:10.3389/fonc.2023.1191913]
34. Chen J, Chen JG, Sun B, Wu JH, Du CY (2020) Integrative analysis of immune microenvironment-related CeRNA regulatory axis in gas tric cancer. Math Biosci Eng, 17(4): 3953-3971. [DOI:10.3934/mbe.2020219]
35. Choi S-I, Lee J-H, Kim R-K, Jung U, Kahm Y-J, Cho E-W, Kim I-G (2020) HSPA1L enhances cancer stem cell-like properties by acti vating IGF1Rβ and regulating β-catenin transcription. International Journal of Molecular Sciences, 21(18): 6957. [DOI:10.3390/ijms21186957]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

International Journal of Radiation Research
Persian site map - English site map - Created in 0.04 seconds with 50 queries by YEKTAWEB 4722