|
|
Lei Y, Liu Y, Zhang W, Chu F, Guo T. Molecular dynamic simulations of β type medical titanium alloys with induced micro-structural damage under noncontinuous proton radiation: A nanoparticle model study. Int J Radiat Res 2025; 23 (3) :743-750 URL: http://ijrr.com/article-1-6667-en.html
Radiology Department, Beijing Chaoyang Hospital of Capital Medical University, Beijing, China , zhangweiguo0906@sina.com
Abstract: (251 Views)
Background: Medical Titanium (Ti) alloys have been widely used in the fields of wound repair and orthopedic treatment because of their high strength, good resistance to physiological corrosion and excellent biomechanics properties. However, similar withto other metal materials, Medical Ti alloys may also be damaged with potentially suffer from damages of various extentvarying degrees under proton radiation condition and environment. Materials and Methods: As theSince traditional investigation methods are limited on time and space size to some extent, Molecular Dynamic (MD) simulations are generally applied to uncover the entire proton radiation process, and the simulatedsimulation models are concentrated on β type medical Ti alloys. Results: Firstly, when the proton struck withe a constant velocity of 2000 Å/ps impact with Primary Knock-on Atom (PKA) at a constant velocity of 2,000 Å/ps, the kinetic energy of 24,451.7 eV will would be transferred, and PKA willwould leave its original site and further transfer the kinetic energy, until reaching the equilibrium site, but accompanied by . This process also leave a plenty ofsignificant micro-structure damages. Secondly, by adjusting the velocity of proton to be in the range of 1,500 Å/ps ~ 2,500 Å/ps, damage zone could be expanded by increasing the kinetic energy of proton. through adjusting the velocity of proton between 1500 and 2500 Å/ps, it seems that the addition of proton kinetic energy could enlarge the damage zone. However, the increase of increased Ti alloy matrix temperature did not have a great impact on the velocity of proton. could not show the same effect with proton velocity. Thirdly, the multi-proton effect on horizontal mode is more obviouspronounced than that on vertical mode. Conclusions: It is kinetic energy, but not rather than potential energy, that contributes to the formation of micro-structure in Ti alloys. The influence of temperature can be ignored in practical applications, In the practice environment, effects of temperature can be ignored, but the velocity and density of incident proton ought to be considered.
References
1. 1. Rack HJ and Qazi JI (2006) Titanium alloys for biomedical applications. Materials Science and Engineering: C, 26(8): 1269-1277. [ DOI:10.1016/j.msec.2005.08.032] 2. Sun R and Mi G (2023) Influence of alloying elements content on high temperature properties of Ti-V-Cr and Ti-Al-V series titanium alloys: A JMatPro program calculation study. Journal of Physics: Conference Series, 2639: 012019. [ DOI:10.1088/1742-6596/2639/1/012019] 3. Yan M, Luo SD, Schaffer GB, Qian M (2012) TEM and XRD characterisation of commercially pure α-Ti made by powder metallurgy and casting. Materials Letters, 72: 64-67. [ DOI:10.1016/j.matlet.2011.12.072] 4. Thota MK, Kapoor R, Basak CB, Mukherjee AB, Chakravartty JK (2015). High temperature deformation of α-Ti. Materials Science and Engineering: A, 624: 213-219. [ DOI:10.1016/j.msea.2014.11.080] 5. Kao YL, Tu GC, Huang CA, Liu TT (2005) A study on the hardness variation of α- and β-pure titanium with different grain sizes. Materials Science and Engineering: A, 398(1-2): 93-98. [ DOI:10.1016/j.msea.2005.03.004] 6. Huang Q, Liu X, Yang X, Zhang R, Shen Z, Feng Q (2015) Specific heat treatment of selective laser melted Ti-6Al-4V for biomedical applications. Frontiers of Materials Science, 9(4): 373-381. [ DOI:10.1007/s11706-015-0315-7] 7. Banerjee D and Williams JC (2013). Perspectives on titanium science and technology. Acta Materialia, 61: 844-879. [ DOI:10.1016/j.actamat.2012.10.043] 8. Mohammed MT, Khan ZA, Manivasagam G, Siddiquee AN (2015) Influence of thermomechanical processing on biomechanical compatibility and electrochemical behavior of new near beta alloy, Ti-20.6Nb-13.6Zr-0.5 V. International Journal of Nanomedicine, 10: 223-235. [ DOI:10.2147/IJN.S80000] 9. Semlitsch M (1987) Titanium alloys for hip joint replacements. Clinical Materials, 2(1): 1-13. [ DOI:10.1016/0267-6605(87)90015-1] 10. Shen X, Shukla P, Nath S, Lawrence J (2017) Improvement in mechanical properties of titanium alloy (Ti-6Al-7Nb) subject to multiple laser shock peening. Surface and Coatings Technology, 327: 101-109. [ DOI:10.1016/j.surfcoat.2017.08.009] 11. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Progress in Materials Science, 54(3): 397-425. [ DOI:10.1016/j.pmatsci.2008.06.004] 12. Yang X and Hutchinson CR (2016) Corrosion-wear of β-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid. Acta Biomaterialia, 42: 429-439. [ DOI:10.1016/j.actbio.2016.07.008] 13. Cai D, Chen D, Zhang G, Yu Y (2019) Research progress of medical titanium alloys. China Medical Device Information, 25(9): 43-45. 14. Hao YL, Li SJ, Sun SY, Zheng CY, Yang R (2007) Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications. Acta Biomaterialia, 3(2): 277-286. [ DOI:10.1016/j.actbio.2006.11.002] 15. Chen Z, Dominello MM, Joiner MC, Burmeister JW (2023) Proton versus photon radiation therapy: A clinical review. Frontiers in Oncology, 13: 1133909. [ DOI:10.3389/fonc.2023.1133909] 16. Huynh TYH, Truong HNT, Trinh HL, Nguyen VT, Le CH (2024) Improvement of the accuracy of radioactivity analysis using gamma spectroscopy by reducing the compton continuum of 40K gamma spectrum. International Journal of Radiation Research, 22(3): 565-572. [ DOI:10.61186/ijrr.22.3.565] 17. Song S, Lee YS, Kim W, Choi M, Kim S, Bae H, et al. (2024) Anti-inflammatory effects of low-dose rate ionizing radiation on cell lines derived from osteoarthritis patients. International Journal of Radiation Research, 22(3): 585-593. [ DOI:10.61186/ijrr.22.3.585] 18. Yavas MC, Kilitci A, Çelik E, Yegin K, Sirav B, Varol S (2024) Rat brain and testicular tissue effects of radiofrequency radiation exposure: Histopathological, DNA damage of brain and qRT-PCR analysis. International Journal of Radiation Research, 22(3): 529-536. [ DOI:10.61186/ijrr.22.3.529] 19. Luo Y, Peng C, Deng Q, Song H, Zhai S, Zhou Q (2024) Application of ultrasonography and 99mTc-MIBI scintigraphy in the diagnosis and localization of hyperparathyroidism. International Journal of Radiation Research, 22(1): 97-101. [ DOI:10.61186/ijrr.22.1.97] 20. Yang L, Chen Y, Miller J, Weber WJ, Bei H, Zhang Y (2024) Nanoindentation study on early-stage radiation damage in single-phase concentrated solid solution alloys. Materials Science & Engineering A, 908: 146746. [ DOI:10.1016/j.msea.2024.146746] 21. Shi Y, Wang Q, Yang Q, Song Z, Wan M, Ma R, et al. (2023) Effect of Mo alloying on vacancy-defect evolution and irradiation damage in titanium alloy. Journal of Alloys and Compounds, 968: 172130. [ DOI:10.1016/j.jallcom.2023.172130] 22. An X, Zhang H, Zhu T, Wang Q, Zhang P, Song Y, et al. (2022) Exploration of vacancy defect formation and evolution in low-energy ion implanted pure titanium. International Journal of Hydrogen Energy, 47(13): 8467-8479. [ DOI:10.1016/j.ijhydene.2021.12.192] 23. Ishida T, Wakai E, Hagiwara M, Makimura S, Tada M, Asner DM, et al. (2018). Study of the radiation damage effect on Titanium metastable beta alloy by high intensity proton beam. Nuclear Materials and Energy, 15: 169-174. [ DOI:10.1016/j.nme.2018.04.006] 24. Liu W, Chen P, Qiu R, Khan M, Liu J, Hou M, Duan J (2017) Nuclear instruments and methods in physics research section B: Beam interactions with materials and atoms. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 405: 22-30. [ DOI:10.1016/j.nimb.2017.05.016] 25. He T, Li X, Qi Y, Zhao M, Feng M (2024) Molecular dynamics simulation of primary irradiation damage in Ti-6Al-4V alloys. Nuclear Engineering and Technology, 56(4): 1480-1489. [ DOI:10.1016/j.net.2023.12.001] 26. Verkhovtsev AV, Solov'yov IA, Solov'yov AV (2021) Irradiation-driven molecular dynamics: a review. The European Physical Journal D, 75: 213. [ DOI:10.1140/epjd/s10053-021-00223-3] 27. Cui J, Hou Q, Li M, Fu B (2024) Effect of applied strain on radiation damage in CoCrFeNi concentrated solid solution alloys: Insights from molecular dynamics simulations. Nuclear Inst and Methods in Physics Research, B, 552: 165378. [ DOI:10.1016/j.nimb.2024.165378] 28. Wei G, Byggmästar J, Cui J, Nordlund K, Ren J, Djurabekova F (2024) Revealing the critical role of vanadium in radiation damage of tungsten-based alloys. Acta Materialia, 274: 119991. [ DOI:10.1016/j.actamat.2024.119991] 29. Wang Z, Guo K, Wang C, Zhang D, Tian W, Qiu S, Su G (2022) Molecular dynamics study of liquid sodium film evaporation and condensation by Lennard-Jones potential. Nuclear Engineering and Technology, 54(8): 3117-3129. [ DOI:10.1016/j.net.2022.02.014] 30. Wang Y, Xu J, Wang Q (2023) Molecular dynamics simulation and nonlinear analysis of density fluctuations in Lennard-Jones fluid system near the critical point. Chinese Journal of Physics, 84: 132-151. [ DOI:10.1016/j.cjph.2022.12.012] 31. Tang Y, Fu Z, Raos G, Ma F, Zhao P, Hou Y (2024) Molecular dynamics simulation of adhesion at the asphalt-aggregate interface: A review. Surfaces and Interfaces, 44: 103706. [ DOI:10.1016/j.surfin.2023.103706] 32. Li X, Liu Y-j, Nian B-b, Cao X-y, Tan C-p, Liu Y-f, Xu Y-j (2022) Molecular dynamics revealed the effect of epoxy group on triglyceride digestion. Food Chemistry, 373: 131285. [ DOI:10.1016/j.foodchem.2021.131285] 33. Sun R, Mi G, Huang X, Sui N (2024) Molecular dynamic simulations of Ti-6Al and Fe-12Cr alloys for their heat transfer and oxygen transport behaviors. Modern Physics Letters B, 38: 2350263. [ DOI:10.1142/S0217984923502639] 34. Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Brown WM, Crozier PS, et al. (2022) LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271: 108171. [ DOI:10.1016/j.cpc.2021.108171] 35. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117(1): 1-19. [ DOI:10.1006/jcph.1995.1039] 36. Rappe AK, Casewit CJ, Colwell KS, III WAG, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25): 10024-10035. [ DOI:10.1021/ja00051a040] 37. Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. Journal of Physical Chemistry, 94(26): 8897-8909. [ DOI:10.1021/j100389a010] 38. Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Modelling and Simulation in Materials Science and Engineering, 18(1): 015012. [ DOI:10.1088/0965-0393/18/1/015012] 39. Sun R and Mi G (2024) Investigations on the surface temperature field of Ti-6Al and Ti-48Al alloy under continuous laser ablation. Rare Metal Materials and Engineering, 53(9): 2405-2412. 40. Ackland G and Jones AP (2006) Applications of local crystal structure measures in experiment and simulation. Physical Review B, 73(5): 054104. [ DOI:10.1103/PhysRevB.73.054104] 41. Xue Li, Yanjun Liu, Yong-jiang Xu, Yuanfa Liu (2024) System-wide coordination and communication of lipid metabolism atlas revealed cytotoxicity of epoxy triglyceride in deep-frying oil. Food Bioscience, 59: 104193. [ DOI:10.1016/j.fbio.2024.104193] 42. Xiujun Lin, Fangfang Liu, Zihan Ma, Xue Li, Yang Li (2025) Investigating the impact of beeswax addition and diacylglycerol profiles on bigel properties and application in bread: Insights on intermolecular interaction mechanisms. Food Hydrocolloids, 160: 110838. [ DOI:10.1016/j.foodhyd.2024.110838] 43. Yang Cheng, Xiujun Lin, Bolin Xu, Xue Li, Yang Li (2024) Oleogel formation based on natural insoluble soybean fiber using capillary force: A novel strategy and application. International Journal of Biological Macromolecules, 282: 137361. [ DOI:10.1016/j.ijbiomac.2024.137361] 44. Chi YM and Chang CC (2024) Axillary lymph nodes's response to pneumococcal polysaccharide vaccination on FDG-PET/CT examination: Two case reports. International Journal of Radiation Research, 22(4): 1095-1097. [ DOI:10.61186/ijrr.22.4.1095] 45. Xia TF, Zhang ZJ, Guo X (2024). Effects of DNA methyltransferase 2 (DNMT2) on gastric cancer cells proliferation and migration via regulation of structural maintenance of chromosomes 3 (SMC3). International Journal of Radiation Research, 22(4): 897-902. [ DOI:10.61186/ijrr.22.4.897]
|