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Iodine-125 radiation inhibits epithelial-mesenchymal 
transition in lung cancer cells by blocking TGF-β1/Smad3/

Snai1 signaling 

INTRODUCTION 

Lung cancer is a common and fatal malignancy 
worldwide (1, 2). According to global cancer statistics, 
in 2022, there were 2,480,301 newly diagnosed cases 
and 1,817,172 deaths, cases in 2022, making lung 
cancer the leading cause of both cancer incidence and 
mortality worldwide (3). Smoking is the main cause of 
80-90% of lung cancer cases, with other factors 
including radon or fume exposure, toxic occupational 
environment, and microbial infection, among others 
(4, 5). Similar to other types of cancer, surgery, 
chemotherapy, and radiotherapy are traditional 
therapeutic strategies for lung cancer in clinical 
practice (6). The development of immunotherapy and 
molecular targeted therapy has great advantages for 
improving the outcomes of patients with lung cancer 
(7). However, the outcome of lung cancer remains 
poor, particularly because of late diagnosis, 
metastasis, and drug resistance (8, 9). Therefore, more 
effective therapeutic strategies are required for lung 
cancer. 

Brachytherapy is a type of radiotherapy that puts 
radioactive sources within or close to the tumor 
parenchyma, allowing more concentrated 
radiotherapy while sparing surrounding normal 
tissues (10). Evidence has shown that brachytherapy is 
effective and safe for tumors located at various sites, 
such as the lungs, liver, colon, pancreas, prostate, 
breast, and endometrium (11, 12). In brachytherapy, 
radioactive sources contain Cobalt-60, iridium-192, 
ruthenium-106, palladium-103, and astatine-211 (13, 

14), among which iodine-125 (125I) is the most 
common one (15-17). 125I brachytherapy is widely used 
to treat diverse types of tumors (16, 18-20), including 
lung cancer (21). A biocentric analysis showed that 125I 
brachytherapy was more effective in elevating the 
survival rate within six months without progression 
(76.3% vs. 51.5%, P=0.002) than external beam 
radiotherapy in patients with non-small cell lung 
cancer (NSCLC) accompanied by brain metastasis (22). 
125I brachytherapy improves clinical outcomes and 
reduces the possibility of myelosuppression in 
patients when compared with chemotherapy (23). 
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ABSTRACT 

Background: Iodine-125 (125I) brachytherapy is an effective strategy for treating 
human tumors. The current study aimed to discover the mechanisms 
underlying the therapeutic action of 125I radiation in lung cancer, with a focus 
on its impact on the epithelial-mesenchymal transition (EMT). Materials and 

Methods: A549 cells, a human lung adenocarcinoma cell line, were treated 
with transforming growth factor β1 (TGF-β1) and/or 125I (control, TGF-β1, 125I, 
and TGF-β1 + 125I groups) to evaluate the effects of 125I on TGF-β1-induced 
EMT. After treatment, the viability of A549 cells was detected using 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The 
expression of E-cadherin, N-cadherin, Vimentin, Smad3, and Snai1 markers 
and pathway molecules was measured. Results: 125I radiation inhibited the 
viability of A549 cells, both with and without TGF-β1 treatment. TGF-β1 
intervention promoted the EMT of A549 cells, as demonstrated by the 
morphological transition from a polygonal shape to a spindle shape, reduced 
E-cadherin levels, and elevated Vimentin and N-cadherin expression. Notably, 
TGF-β1-activated EMT was significantly weakened by 125I radiation. Moreover, 
125I radiation reversed TGF-β1-induced upregulation of Smad3 and Snai1 in 
A549 cells. Conclusion: 125I radiation suppresses the EMT by blocking TGF-β1/
Smad3/Snai1 signaling, contributing to the treatment of lung cancer. 
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Another meta-analysis involving eight studies found 
that 125I brachytherapy improved the efficacy of 
transarterial chemical infusion without inducing 
severe adverse events in patients with advanced lung 
cancer (24). However, the therapeutic mechanisms of 
125I brachytherapy in lung cancer have not been fully 
elucidated.  

Epithelial-mesenchymal transition (EMT), a 
process involving cell morphological transformation, 
plays a crucial role not only in embryogenesis and 
wound healing but also in tumour progression (25, 26). 
In terms of molecular mechanisms, transcription 
factors, including SNAI, ZEB, and TWIST, are master 
regulators of EMT (27). The TGF-β pathway is a 
predominant signalling pathway involved in the 
regulation of EMT. As a major driver, TGF-β can 
induce EMT via activating Smad/non-Smad and cross
-talking with many other signals (28). Recent studies 
have revealed that many agents exhibit therapeutic 
potential in lung cancer by blocking TGF-β-mediated 
EMT. For example, salinomycin inhibits cell migration 
and invasion by suppressing TGF-β1-activatied EMT 
in lung cancer. Cucurbitacin B inhibits TGF-β1-
activated EMT in NSCLC, contributing to remission of 
tumour metastasis in vivo (29). A TGF-β1 inhibitor, 
Compound 67 (an analogue of chalcones), suppresses 
cell migration, invasion, and EMT in lung cancer (30).  

The above demonstrates that EMT is closely 
linked to metastasis and recurrence of lung 
adenocarcinoma and that 125I radiation exerts 
superior effects in patients with advanced lung 
adenocarcinoma. However, there are few studies on 
the association between radioactive 125I particles 
and EMT, as well as the underlying mechanism in the 
context of lung adenocarcinoma. Hence, we aimed to 
explore the mechanism of action of 125I radiation in 
lung cancer, primarily concerning EMT. Specifically, 
TGF-β1 was used to induce EMT in human lung 
adenocarcinoma cells. The effects of 125I radiation on 
EMT and TGF-β1/Smad3/Snai1 signaling were 
mainly explored at the cellular level. This study aims 
to reveal the mechanism of action of 125I radiation on 
EMT related to the TGF-β1/Smad3/Snai1 signaling, 
laying the foundation for lung cancer therapy. 

 
 

MATERIALS AND METHODS 
 

Cell culturing and treatments 
A549 cells (a human lung adenocarcinoma cell 

line; Procell, Wuhan, China) were maintained in RPMI
-1640 medium (Meilun, Xingtai, China) containing 
10% foetal bovine serum (FBS; Gibco, Grand Island, 
NY, USA) at 37 °C with 5% CO2. 

125I seeds were obtained from Beike 
Biotechnology (Beijing, China) and stored on lead 
clips. The parameters of 125I seeds are as follows: 
diameter = 0.8 mm, length = 4.5 mm, effective 
radiation radius = 17 mm, half-life = 59.43 d, X-ray 
energy = 27.4-31.5 keV, γ radiation energy = 35.5 

752 

keV, and radiation activity = 0.8 mCi. For treatment, 
A549 cells were categorised into four groups. In the 
TGF-β1 group, cells received 48 h of treatment with 5 
ng/mL TGF-β1, as previously described (31). In the 125I 
group, cells were irradiated with 10 125I seeds at an 
interval of 1 cm. In the TGF-β1 + 125I group, cells 
received both TGF-β1 treatment and 125I irradiation 
simultaneously. Untreated cells were used as the 
control group. After treatment, the morphological 
transformation of A549 cells was monitored under a 
microscope (MOTIC, Chengdu, China). 

Throughout the experiment, the personnel were 
equipped with lead-protective clothing. Cells in each 
group were cultured in a separate incubator and 
separated with 0.5 mm lead plates. After the 
experiments, all 125I seeds were recycled into a lead 
tank and disposed of according to the guidelines for 
radioactive waste. 

 

MTT analysis 
The viability of A549 cells in different groups was 

determined using an MTT assay kit (Sparkjade, 
Qingdao, China) according to the manufacturer’s 
instructions. Simply, we seeded A549 cells (2×104 
cells/well) in 96-well plates and cultured for 24 h. 
Afterwards, cells were stimulated with TGF-β1 and/
or 125I for another 24 or 48 h (the 48th and 72th hour). 
After 4 h of incubation with 10 µL MTT working 
solution, cells were continuously treated with 100 μL 
dimethyl sulfoxide for 2 h. The optical density was 
measured at 570 nm and was eventually read by a 
microplate reader (Hiwell Diatek, Wuxi, China). 

 

qRT-PCR 
Cells were lysed in TRIzol reagent (Vicbio 

Biotechnology Co., Ltd., Beijing, China) on ice to 
separate RNA samples, and the isolated RNAs were 
immediately reverse-transcribed into cDNAs using a 
cDNA synthesis kit (Servicebio, Wuhan, China). Using 
a SYBR Green qPCR Master Mix (Servicebio, Wuhan, 
China), qRT-PCR was run on a PCRAmplifier (#CFX96 
Touch Deep Well, Bio-Rad, CA, USA).  Utilising the 2-

∆∆Ct method (internal control: GAPDH), we calculated 
the relative expression of specific mRNAs. The primer 
sequences are listed in table 1. 
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Table 1. The used primers in this study. 
Name Gene symbol Gene ID Sequences (5'-3') 

E-
cadherin CDH1 999 

Forward primer: TGGACCGAGA-
GAGTTTCCCT 

Reverse primer: 
TTAGCCTCGTTCTCAGGCAC 

Vimentin VIM 7431 

Forward primer: GGAC-
CAGCTAACCAACGACA 

Reverse primer: AAGGTCAA-
GACGTGCCAGAG 

N-
cadherin CDH2 1000 

Forward primer: 
GAGGCTTCTGGTGAAATCGC 

Reverse primer: AATCTG-
CAGGCTCACTGCTC 

SMAD3 SMAD3 4088 

Forward primer: 
TCCATGACTGTGGATGGCTTC 
Reverse primer: TTCAGGTT-

GCATCCGATGTG 

SNAI1 SNAI1 6615 

Forward primer: TAGCGAG-
TGGTTCTTCTGCG 

Reverse primer: AGGGCTGCTG-
GAAGGTAAAC 
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Western blot 
Cells were lysed in RIPA lysis buffer (Servicebio, 

Wuhan, China) on ice to isolate protein samples. 
Equivalent amounts of protein from different groups 
were used for detection. First, after separation using 
10% SDS-PAGE, we transferred the proteins onto 
PVDF membranes (Millipore Billerica, MA, USA). 
Subsequently, the membrane was blocked with 5% 
BSA for 30 min at 37 °C, followed by co-incubation 
with the following primary antibodies (anti-β-actin, 
Proteintech, Wuhan, China; anti-E-cadherin,                     
-Vimentin, -N-cadherin, -Smad3, and -Snai1, Abcam, 
Cambridge, UK) for 12 h at 4 °C. Afterwards, co-
incubation with secondary antibody was carried out 
for 1 h (HRP-labelled IgG, Servicebio, Wuhan, China) 
at 25 °C. Finally, the membranes were visualised 
using an efficient chemiluminescence kit (Servicebio, 
Wuhan, China) and quantified using a Gel Imaging 
System (Tanon, China).  

 

Statistical analysis 
Quantitative data were displayed as mean ± 

standard deviation and were analyzed using 
GraphPad Prism v7.0 (San Diego, CA, USA). One-way 
ANOVA and Tukey’s test were used to compare data 
across the four groups. Statistical significance was set 
at P<0.05.  

 
 

RESULTS 
 

Radiation from 125I inhibits the viability of A549 
cells 

The viability of the A549 cells in response to 125I 
radiation was analyzed. At both 48 and 72 h post-
treatment, a significantly higher viability was 
observed in TGF-β1-stimulated A549 cells in 
comparison with non-stimulated A549 cells (P<0.01). 
125I radiation decreased the viability of A549 cells, 
regardless of TGF-β1 stimulation, with significant 
levels (P<0.01) (figure 1). 

 

Radiation from 125I inhibits the EMT of A549 cells 
Three EMT markers were measured to determine 

the effects of 125I radiation on EMT. As displayed in 

figure 2a, TGF-β1 induced a down-regulation of                 
E-cadherin mRNA expression in A549 cells (P<0.05). 
On the contrary, mRNA levels of Vimentin and                 
N-cadherin were enhanced in TGF-β1-stimulated 
A549 cells in comparison with non-stimulated A549 
cells (P<0.05) (figuree 2b and c). Radiation from 125I 
significantly elevated E-cadherin levels while 
decreasing Vimentin and N-cadherin levels in A549 
cells (P<0.01). Additionally, it reversed the effects of 
TGF-β1 on the regulating of these EMT markers 
(P<0.05) (figure 2a-c). In accordance with the above 
observations on mRNA levels, western blotting 
revealed the same changes in the protein levels of E-
cadherin, N-cadherin, and Vimentin in the different 
groups (P<0.05) (figure 2d-g).  

 
Radiation from 125I blocks TGF-β1/Smad3/Snai1 
signaling in A549 cells 

The mechanism of action of 125I radiation on 
Smad3 and Snai1 cells was further evaluated. As a 
result, the mRNA and protein levels of Smad3 and 
Snai1 were elevated by TGF-β1 (P < 0.05) but were 
decreased by 125I radiation in A549 cells (P<0.01). 
Notably, the upregulation of Smad3 and Snai1 
induced by TGF-β1 was significantly weakened by 125I 
radiation (P<0.05) (figure 3a-e). 
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Figure 1. The viability of A549 cells in different groups was 
measured by MTT assay. A549 cells were treated with TGF-β1 

and/or 125I. **P < 0.01. 

Figure 2. The expression of three EMT markers in A549 cells of 
different groups. a, The mRNA expression of E-cadherin; b, 

The mRNA expression of Vimentin; c, The mRNA expression of 
N-cadherin; d-g, The protein expression of E-cadherin,           

Vimentin, and N-cadherin. *P < 0.05, **P < 0.01. 

 [
 D

O
I:

 1
0.

61
88

2/
ijr

r.
23

.3
.3

3 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 m

ai
l.i

jr
r.

co
m

 o
n 

20
25

-1
1-

02
 ]

 

                               3 / 6

http://dx.doi.org/10.61882/ijrr.23.3.33
https://mail.ijrr.com/article-1-6668-en.html


 
 

DISCUSSION 
 

Lung cancer is a common pulmonary tumor 
associated with high mortality rates worldwide (32). 
As a minimally invasive radiotherapy, brachytherapy 
can be used as an alternative therapy for lung cancer 
at an early stage and as a principal or auxiliary 
therapy for lung cancer at a locally advanced stage or 
with metastasis (33). However, knowledge of the 
mechanisms of action of brachytherapy involving 
EMT in lung cancer remains limited.  

EMT is an important biological process that drives 
the epithelial-to-mesenchymal phenotype. In 
addition to embryonic development, wound healing, 
and organ fibrosis, EMT also plays a prominent role 
in metastasis and resistance (34, 35). On the one hand, 
EMT endows tumor cells with the abilities of 
stemness and invasiveness, contributing to distant 
metastasis and recurrence (36). On the other hand, 
EMT also enhances the drug efflux pump and anti-
apoptotic capacity of tumor cells, contributing to 
drug resistance (34). Therefore, targeting the EMT is a 
key focus in cancer treatment. Evidence has 
determined that A variety of molecules, including 

EFEMP2 (37), ALOX12 (38), PTPL1 (39), HRH3 (40), and 
LINC00891 (41), act as potential therapeutic targets for 
lung cancer by inhibiting EMT, such as EFEMP2 (37), 
ALOX12 (38), PTPL1 (39), HRH3 (40), and LINC00891 (41), 
among others. One review summarized that natural 
product-derived compounds with the ability to inhibit 
EMT are beneficial for the treatment of lung cancer 
(42). E-cadherin, Vimentin and N-cadherin are well-
known biomarkers of EMT; E-cadherin is a marker for 
epithelial cells, whereas the other two are markers for 
mesenchymal cells (43). As a typical epithelial cell 
marker of EMT, downregulation of E-cadherin can 
induce EMT in tumor cells and promote their 
metastasis (44). E-cadherin expression is enhanced in 
human liver cancer cells after radioactive 125I 
treatment (45). Metastasis of cancer cells is highly 
correlated with vimentin expression in NSCLC (46). 
Abnormal expression of N-cadherin enhances tumor 
cell invasion and migration, and N-cadherin-induced 
MMP-9 is regarded as a core step in tumor invasion 
and metastasis (47). In TGF-β1-treated cells, 125I 
radiation increased E-cadherin levels while reducing 
Vimentin and N-cadherin levels, indicating inhibition 
of EMT after 125I therapy. Similar results were 
observed in a previous study (48). 

TGF-β is a pivotal cytokine that is implicated in the 
modulation of embryonic development, 
organogenesis, wound healing, immunomodulation, 
fibrosis, and carcinogenesis, among others (49). 
Notably, TGF-β is well-known as an inducer of EMT, 
and its activation is positively associated with 
metastasis and chemotherapy resistance in cancer 
(50). The underlying mechanisms of TGF-β in EMT are 
complex, and the TGF-β1/Smad3 signal axis is a 
pivotal one. In cells, the receptor complex of TGF-β1 
can lead to the activation of Smad2/3 by inducing C-
terminal phosphorylation. The trimers formed by 
Smad2, 3 and 4 then bind to DNA-binding 
transcription factors and synergistically regulate the 
target genes involved in EMT (28). Until now, emerging 
evidence has determined that TGF-β1/Smad3 
signaling is the target of agents with therapeutic 
potential in cancer. For example, baicalin inhibits 
EMT-related metastasis in breast cancer by inhibiting 
TGF-β1/Smad3 signaling (51). Nobiletin inhibits the 
EMT of NSCLC cells by blocking TGF-β1/Smad3 
signaling (52). OPB suppresses EMT in TGF-β1-induced 
lung cancer cells by regulating Smad3 (53). Snai1 is 
also a pivotal modulator of EMT and can be activated 
by Smad3 (54), which induces EMT by directly 
inhibiting E-cadherin transcription (55). 
Overexpression of Snail1 downregulates E-cadherin 
and Plakoglobin, and upregulates Vimentin and 
Fibronectin to activate EMT (28). Therefore, the TGF-
β1/Smad3/Snai1 signaling pathway is an important 
mechanism by which 125I radiation inhibits EMT in 
lung cancer. 

Our study demonstrates that the therapeutic 
action of 125I radiation in lung cancer is partly 

754 Int. J. Radiat. Res., Vol. 23 No. 3, July 2025 

Figure 3. The expression of Smad3 and Snai1 in A549 cells of 
different groups. a, The mRNA expression of Smad3; b, The 
mRNA expression of Snai1; c-e, The protein expression of 

Smad3 and Snai1; *P < 0.05, **P < 0.01. 
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achieved by inhibiting EMT. However, several 
limitations of this study should be considered. EMT is 
closely associated with tumor metastasis, and we 
mainly focused on the effects of 125I radiation on EMT 
marker expression, while ignoring its effects on 
tumor cell migration and invasion. In addition, this 
was a preliminary study that included only a limited 
number of in vitro experiments. Further in vivo 
experiments are required to verify the findings 
obtained from this study. 

 
 

CONCLUSION 
 

In conclusion, TGF-β1 induces the EMT in lung 
cancer cells, an effect that is reversed by 125I 
radiation. This radiation may inhibit EMT by blocking 
the TGF-β1/Smad3/Snai1 signaling pathway.  
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