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Generation of computed tomography images with different 
tube voltages by generative adversarial network 

INTRODUCTION 

Routine clinical computed tomography (CT) uses 
a tube voltage setting of 120 kVp. However, with the 
development of technology, other tube voltage           
settings are also being applied clinically (1, 2). A low 
tube voltage can enhance the contrast enhancement 
effect of iodine, which reduces the amount of contrast 
medium required compared to that for 120 kVp (3-6). 
In contrast, a high tube voltage scan reduces metal 
artifacts and can recover data lost due to photon 
starvation (7, 8). Zhang et al. reported that high tube 
voltage, high pitch non-contrast abdominal-pelvic CT 
significantly reduces patient radiation exposure and 
scan time while maintaining image quality. This 
technology avoids artifacts caused by poor breath-
holding and accurately identifies urinary stones at a 
lower dose (9). However, once the CT scan is complete, 
the patient must be scanned again to obtain other 
tube voltage images due to various reasons. In 
particular, the quality of computed tomography 
pulmonary angiography (CTPA) is generally 
suboptimal, resulting in misdiagnosis and 
uncertainty. CTPA uncertainties range from 0.03 to 
10% (10, 11). Therefore, low-kilovoltage images for 
improved contrast enhancement are required. 

However, rescanning requires further radiation 
exposure and contrast media administration that 
would become invasive to the patients.  

One method for avoiding rescanning is using 
virtual monochromatic images (VMI) by dual-energy 
computed tomography (DECT). Lam et al. reported 
that the optimal image signal-to-noise ratio is 65 keV, 
and 40 keV VMI reconstruction with a high contrast-
to-noise ratio is recommended for evaluating patients 
with head and neck squamous cell carcinoma. They 
recommend both the standard 65 keV VMI and 40 
keV VMIs reconstructions (12). In the abdominal 
region, in the single-energy CT (SECT), a hepatic 
enhancement of at least 50 Hounsfield Unit (HU) is 
desirable (13). Noda et al. reported that hepatic 
enhancement (ΔHU > 50 HU) was achieved at 65 keV 
and 70 keV with 400 mgI/kg and 500 mgI/kg in 
DECT, respectively (14). Therefore, once the DECT scan 
was complete, the VMI could reconstruct any image 
of the energy required by the user.  

In contrast, Sugawara et al. reported no significant 
differences were observed in the visualization of 
larger arteries, such as the celiac and superior 
mesenteric arteries. However, VMI obtained with 
conventional half-iodine had more difficulty detecting 
smaller arteries and had lower image resolution (15). 
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ABSTRACT 

Background: Single-energy computed tomography (SECT) requires different energies 
for disease diagnosis and detection. The patient must be scanned again after the CT 
scan to obtain other tube-voltage images, causing increased radiation exposure. One 
method for avoiding rescanning is virtual monochromatic images (VMI) by dual-energy 
computed tomography (DECT). However, VMI has not proven superior to SECT. 
Moreover, DECT is not available at all facilities. This study used generative adversarial 
networks to generate 120 kVp and Sn140 kVp CT images from 80 kVp CT images. 
Material and Methods: This study involved 35 patients with pulmonary hypertension 
who underwent CT scans with DECT. The peak signal-to-noise ratio (PSNR) and 
structural similarity (SSIM) were calculated to evaluate the difference between the 
real and pseudo images. Furthermore, the mean CT values of the pulmonary arteries 
(PA) were compared. Results: The SSIM was 0.99 ± 9.15×10-5 and 0.99 ± 3.38×10-3 at 
120 kVp and Sn140 kVp, respectively. The PSNR was 69.1 ± 1.29 and 66.5 ± 5.40 at 120 
kVp and Sn140 kVp, respectively. Additionally, no significant differences were 
observed in the mean CT values of PA (p > 0.05) between the real and pseudo images. 
Conclusion: The proposed model accurately generated 120 kVp and Sn140 kVp CT 
images from 80 kVp CT images. 
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Additionally, when comparing the low tube voltage of 
SECT to the VMI of DECT, the optimal scan protocol 
and extent vary for every CT vendor (16). Yoshida et al. 
reported that the CT values of the aorta at 70 kVp 
using two high-power X-ray tubes with an iodine 
concentration of 180 mgI/kg was lower than that at 
40 keV, However, 70 kVp was superior to 40 keV in 
both objective and subjective image qualities (17). 
Therefore, although VMI can acquire many energy 
images at once, it still faces problems with image 
quality. Another limitation is that DECT is not 
available at all facilities.  

In addition to VMI, DECT technology can produce 
iodine map images. Dai et al. reported that iodine 
map images can be optimized tumor response 
biomarkers in the abdominal region (18). In the lung 
region, iodine map images reveal segmental 
deficiencies in iodine distribution at locations 
corresponding to vessel occlusion caused by 
embolism (19-21). DECT iodine maps have been used in 
patients with chronic thromboembolic pulmonary 
hypertension (CTEPH), a type of pulmonary 
hypertension (PH) (22-24). Takagi et al. reported that 
the lung perfused blood volume score is a useful and 
noninvasive estimator of clinical CTEPH severity (25). 
DECT requires images in both low and high tube 
voltages.  

Goodfellow et al. reported generative adversarial 
networks (GAN) that can generate a pseudo image 
equivalent to a real image by competing pseudo 
images with real ones (26). Subsequently, a conditional 
GAN (cGAN), which provides stable learning by 
applying certain conditions to the input data and 
enables high-precision image generation, was 
introduced (27). Recently, cGAN demonstrated state-of
-the-art performance in text-to-image synthesis, 
super-resolution, and image-to-image conversion (28-

31).  
In DECT, it has been reported to generate analysis 

images using DECT from SECT images. Kawahara et 
al. reported that deep convolutional GAN can directly 
generate VMI that can be reconstructed by DECT 
from SECT of 120 kVp CT images (32). Zhao et al. 
reported on the generation of VMI from SECT images 
using U-net instead of GAN (33). Funama et al. 
reported on the generation of 55 keV images of VMI 
from 120 kVp SECT images using pix2pix at 8-bit, 256 
× 256 image resolution (34).  

In SECT, Zhao et al. reported synthesizing high-
energy CT (HECT) images from low-energy CT (LECT) 
images with various neural networks. However, in 
their study, the images were also 8-bit, 256 × 256 (35). 
In GAN, LECT to HECT image generation in SECT 
images has not been reported under the same 
conditions as real clinical images at 16-bit and 512 × 
512 in the pulmonary vascular region. The 
significance of this same condition as for clinical 
images is that the CT value can perform tests of 
statistical significance between real images and 
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images generated by GAN. If HECT image can be 
generated from LECT, two different tube voltage 
images can be obtained, so that DECT technology can 
be performed at all facilities. The novelty of this study 
is to generate 16-bit and 512 × 512-pixels HECT 
images corresponding to clinical CT images from 
LECT using GAN. In this study, we aimed at generating 
pseudo 120 kVp and Sn140 kVp images from 80 kVp 
images in the pulmonary vascular region with GAN 
without increasing the radiation dose and without 
using DECT.  

 

 

MATERIAL AND METHODS 
 

Patients 
Chest CT images of 35 patients with PH disease 

scanned by DECT from April 2013 to December 2019 
were used in the experiment. Thirty randomly 
selected CT data (5867 images) were used as training 
data, and the remaining five CT scan data (994 
images) were used as test data. The training data 
were used to train the generator and discriminator 
networks and determine the degree of learning. The 
trained model was applied to the test data to 
generate images. Table 1 summarizes the list of 
target patients. This study was approved in 
accordance with relevant named guidelines and 
regulations by the ethical review boards of our 
institutions (Ethical number: 2023-1-714, Date of 
registration: December 14, 2023). The institutional 
review board approved this retrospective study and 
waived the requirement for obtaining informed 
consent from the patients. 

 
DECT data acquisition and reconstruction 

This study used a second-generation dual-source 
DECT system (SOMATOM Definition Flash; Siemens 
Healthcare, Germany). All patients in this study 
scanned with 80 kVp/Sn140 kVp, reference mAs 
141/60 mAs, gantry rotation time 0.28 s, pitch 1.0, 
and section collimation 0.6 mm.  

Training and test data for the GAN were obtained 
from 80 kVp CT images and Sn140 kVp CT images 
under the dual energy (DE) scan protocol. 120 kVp 
images were created using the DE composition 
system from paired datasets of 80 kVp and Sn140 
kVp CT images on a CT system. All images were 
reconstructed at a slice thickness of 2.0 mm with a 
2.0 mm interval, using a DE medium-soft convolution 
kernel (D30f with filtered back projection) in a 28-33 
cm display field of view based on the patient’s body 
size.  
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Table 1. Target patient characteristics.  

  Total 
Age 69 (39-96) 
Sex 6 : 29 

Weight [kg] 56.4 (36.0-80.1) 
Body Mass Index [kg/m2] 23.2 (14.5-34.3) 

 [
 D

O
I:

 1
0.

61
18

6/
ijr

r.
23

.4
.6

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 m

ai
l.i

jr
r.

co
m

 o
n 

20
26

-0
2-

19
 ]

 

                               2 / 8

http://dx.doi.org/10.61186/ijrr.23.4.6
https://mail.ijrr.com/article-1-6725-en.html


The CT images generated by GAN were defined as 
pseudo images and the CT images reconstructed with 
the device were defined as real images. The 
resolution of both real and pseudo images was 512 × 
512 matrix. 

 

Model structure and training 
To generate the pseudo 120 kVp and Sn140 kVp 

CT images, we used pix2pix model reported by Isola 
et al. (36), a modified conditional GAN using MATLAB 
R2023a (MathWorks, United States). Pix2pix has 
generator and discriminator architecture. Figure 1 
shows the details of the two networks. 

The generator network was U-Net, which was an 
encoder-decoder convolutional neural network with 
skip connections (figure 2). The discriminator 
network was a convolutional patch GAN that only 
penalizes the structure at the scale of image patches 
(figure 3). For generating the 120 kVp images, a pair 
of 80 kVp and 120 kVp real images (real-image pairs) 
and a pair of 80 kVp real images and 120 kVp pseudo 
image (including pseudo-image pairs) were 
alternately input to the discriminator. Similarly, for 
generating the Sn140 kVp imaging, a pair of 80 kVp 
and Sn140 kVp real images (real-image pairs) and a 
pair of 80 kVp real images and Sn140 kVp pseudo 
image (including pseudo-image pairs) were 
alternately input to the discriminator. An input image 
was divided into small patch images, which were 
estimated to be real-image pairs or including pseudo-
image pairs. Each patch image extracts features from 
a convolutional layer. The fully connected layer 
discriminates each patch image into real-image pairs 
or including pseudo-image pairs using the softmax 
function. The result of the discriminator between real
-image pairs and including pseudo-image pairs is 
output by summing the results of all patch images. 
The training proceeded with the parameters of each 
network by comparing the output of the 
discriminator and the correct label. This operation 
was repeated for all the training datasets. Finally, the 
generator is trained to generate more realistic 
pseudo images. Convolution-BatchNormalization-
Leaky ReLU style modules were used in the generator 
and discriminator. The Adam solver training options 
were set to a learning rate of 0.0002, momentum 
parameters β1 = 0.5, β2 = 0.999, and 200 epochs. 

 

Quantitative image analysis 
 After training, this study quantitatively compared 

pseudo images generated using test data with the real 
images. The peak signal-to-noise ratio (PSNR) (37) and 
structural similarity index (SSIM) (38) were calculated 
to evaluate the difference between the real images 
and the generated pseudo images. PSNR and SSIM 
were calculated by equations (1) and (3), 
respectively. 

 
   (1) 
 

Where; MAXf is the maximum pixel value of the 
image. MSE was determined by equation (2). 

 
                   (2) 
 

Where; f and g are real images and pseudo images, 
respectively. both of size M × N.  

Rajkumar et al. reported that the standard value 
of PSNR is 35 to 40 dB, with higher PSNR values 
indicating better image quality (37). 

 

(3) 

Where; CTreal and CTpseudo are the pixel values of 
the real and pseudo images, respectively. µreal and 
µpseudo are the mean values of the real and pseudo 
images, respectively. σreal and σpseudo are the standard 
deviations of the real and pseudo images, 
respectively. σreal.pseudo is the covariance of the real 
and pseudo images. c1 = (0.01 × L)2, c2 = (0.03 × L)2; c1 
and c2 constants that prevent zero denominator and 
stabilize equation (3). L is the dynamic range of CT 
value for the real and pseudo images. SSIM is a metric 
that measures the similarity between a real image 
and a generated pseudo image. An SSIM value of 1.0 
is the highest, indicating high structural similarity. 
Moreover, SSIM is correlated with human visual 
perception (38). 

 

CT values of pulmonary arteries 
The average CT values of the real and pseudo 

images at 120 kVp or Sn140 kVp were measured for 
five cases of test data in the region of interest (ROI). 
The circular ROI was set at 150 mm2. For all test data, 
measurements were taken five times for the main, 
right, and left pulmonary arteries at different slice 
locations within the range from the left pulmonary 
artery upper end to the right ventricular outflow 
tract. Figure 4, an example of the test data, shows the 
measurement points.  

875 Takano et al. / Generation of CT images by GAN 

Figure 1. Structure of pix2pix Images surrounded by red lines 
are real images, and images surrounded by blue lines are 

pseudo images. 

Figure 2. Pix2pix model comprises generator U-Net. 
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Statistical analysis 
A significant difference test was performed using 

the paired t-test for the average CT value at each 
position between the real and pseudo images. p < 
0.05 was considered statistically significant. The JMP 
Pro 17 (A Business Unit of SAS, United States) was 
used for statistical significance testing. 

 
 

RESULT 
 

Quantitative image analysis 
Figure 5 shows the real and pseudo images at 120 

kVp of a representative case in the test data. Figure 6 
shows the real and pseudo images of Sn140 kVp. 
Figure 7 shows an image of atelectasis with a 
collapsed left lung. CT images of atelectasis with a 
collapsed one lung generated good pseudo images. 

The SSIM of 120 kVp real and pseudo images in 
the test data was 0.99 ± 9.15×10-5 and the PSNR was 
69.1 ± 1.29. The SSIM and PSNR at Sn140 kVp were 
0.99 ± 3.38×10-3 and 66.5 ± 5.40, respectively. The 
pseudo images at 120 kVp and Sn140 kVp were very 
similar to the real images, with SSIM close to 1.0 and 
PSNR > 40 dB.  

 

CT 

values of pulmonary arteries 
Table 2 shows the mean CT values of the main, 

right, and left pulmonary arteries on the real and 
pseudo images at 120 kVp. The 120 kVp mean CT 
values did not indicate a statistically significant 
difference between the real and pseudo images. 

Table 3 shows the mean CT values of the Sn140 
kVp real and pseudo images. The Sn140 kVp mean CT 
values did not indicate a statistically significant 
difference between the real and pseudo images. 
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Figure 3. Pix2pix model comprises discriminator Patch GAN. 

Figure 4. CT value measurement site in one case of test data 
images of the main, right, and left pulmonary arteries.            
Red circle: Left pulmonary arteries. Blue circle: Right             

pulmonary arteries. Black circle: Main pulmonary arteries. 

Figure 5. Axial image (A) and 3D image of contrast-enhanced 
pulmonary arteries (B) in real image at 120 kVp. Axial image 

(C) and 3D image of contrast-enhanced pulmonary arteries (D) 
in pseudo image at 120 kVp. 

C A B D 

 Figure 6. Axial image (A) and 3D image of contrast-enhanced 
pulmonary arteries (B) in real image at Sn140 kVp. Axial image 
(C) and 3D image of contrast-enhanced pulmonary arteries (D) 

in pseudo image at Sn140 kVp. 

A: real image at 120 kVp B: pseudo image at 120 kVp 

C: real image at Sn140 kVp D: pseudo image at Sn140 kVp 

Figure 7. Cases of atelectasis with collapsed left lung and 
endovascular coil embolization. 

Table 2. CT value at 120 kVp. 

Target part 
Mean CT value 

(HU) Real image 
Mean CT value (HU) 

Pseudo image 
p value 

Main PA 373.46±25.19 372.14±24.79 0.71 
Rt PA 328.76±40.98 329.34±40.98 0.46 
Lt PA 375.42±26.20 377.43±44.10 0.22 

Main PA: Main pulmonary artery; Rt PA: Right pulmonary artery; Lt 
PA: Left pulmonary artery; HU: Hounsfield Unit. 

Table 3. CT value at Sn140 kVp. 

Target part 
Mean CT value 

(HU) Real image 
Mean CT value (HU) 

Pseudo image 
p value 

Main PA 240.18±29.33 244.98±27.60 0.21 

Rt PA 212.53±30.64 211.47±33.21 0.73 

Lt PA 242.67±31.29 241.01±30.21 0.22 
Main PA: Main pulmonary artery; Rt PA: Right pulmonary artery; Lt PA: 
Left pulmonary artery; HU: Hounsfield Unit. 

C A B D 

 [
 D

O
I:

 1
0.

61
18

6/
ijr

r.
23

.4
.6

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 m

ai
l.i

jr
r.

co
m

 o
n 

20
26

-0
2-

19
 ]

 

                               4 / 8

http://dx.doi.org/10.61186/ijrr.23.4.6
https://mail.ijrr.com/article-1-6725-en.html


DISCUSSION 
 

In this study, pix2pix was used to generate 120 
kVp and Sn140 kVp images from 80 kVp images. The 
pseudo 120 kVp CT and Sn140 kVp images generated 
from 80 kVp CT images using pix2pix were similar to 
the real images obtained from DECT scans.  

The PSNR at 120 kVp and Sn140 kVp were greater 
than 40 dB, thereby indicating that the generated 
pseudo images did not deteriorate and had a 
sufficiently high image quality. The SSIM value was 
0.99. This demonstrates that the pseudo image can be 
generated to be structurally similar to the real image. 

 PH of the target lesion in this study refers to 
elevated pressure resulting from pulmonary arterial 
remodeling and inflammation or increased 
downstream pressure (39). Therefore, this study 
emphasized the accuracy of CT values in the 
pulmonary arteries. In this case, CT values were 
measured in three segments of the pulmonary, main 
pulmonary, left pulmonary, and right pulmonary 
arteries. There were no significant differences in the 
CT values of the pulmonary arteries between the real 
and pseudo images at 120 kVp and Sn140 kVp.   

Li et al. proposed a deep learning-based (DL-
based) cascaded deep convolutional neural network 
(CD-ConvNet) structure to simulate pseudo-HECT 
images from LECT images. They reported that the 
profiles of pseudo-HECT images from the proposed 
CD-ConvNet matched well with the profiles of real 
HECT images (40). Zhao et al. demonstrated a 
technique to map LECT images to HECT images using 
a two-stage convolutional neural network (CNN). 
They reported that the maximum HU difference 
between the generated HECT images and the real 
HECT images was 3.47 HU (41). Both studies, as we did 
in this study, there was no difference in the similarity 
between real and pseudo images. However, our study 
has two specific points compared to the previous 
studies. First, while the both studies used CNN-based 
networks, this study used GAN-based networks. The 
reason is that Charyyev et al. have reported that a 
GAN-based network with additional discriminators 
enhances realistic synthetic DECT images                
compared to a CNN-based network (42). Secondly, 
the previous studies generated one set of HECT 
images from LECT images. In contrast, our study 
generated two sets of HECT images (120 kVp and 
Sn140 kVp) from a LECT image of 80 kVp.  

The test data included cases of atelectasis with a 
collapsed left lung and endovascular coil 
embolization. The training data did not include single
-lung or metal-coil cases. Pix2pix can generate 
portraits from sketches, and color palettes from 
sketches. It is highly sophisticated in generating 
pseudo data for partial images that do not exist; 
therefore, pix2pix used in this study generated good 
pseudo images, even for CT images of atelectasis with 
a collapsed one lung. To the best of our knowledge, 

there have been no reports of DL-based models that 
have generated CT images of atelectasis with lung 
collapse or of endovascular coil embolization. The 
advantage of this study is that we were able to 
generate those CT images using a GAN-based 
network. 

Additionally, we adopted a method to generate 
images using a high tube voltage from a low tube 
voltage. Liu CK et al. reported that low-to-high kV 
conversion was superior to high-to-low kV 
conversion in clinical DECT. The deep learning (DL-
based) 140 kVp image generated from the 80 kVp 
image using DECT had a lower mean squared error 
between the true and DL-based images (43). 
Therefore, an 80 kVp image was used as the input 
image. However, CT scans at 80 kVp are rarely 
performed in clinical settings. In the future, the 
standard tube voltage used in many facilities will be 
120 kVp; therefore, 80 kVp and Sn140 kVp pseudo 
images have to be generated from the 120 kVp tube 
voltage images. 

This study has several limitations. All patients in 
our study were PH patients only. CT images of 
normal and other diseased patients have not been 
evaluated. In addition, we used only pix2pix and did 
not compare with other GAN-based networks. 
Moreover, it has not been evaluated whether the 
generated CT images are useful for diagnosis. These 
limitations expect to overcome in our future study.   

 
 

CONCLUSION 
 

Pseudo images with different tube voltages of 120 
kVp and Sn140 kVp were generated from 80 kVp CT 
images using the GAN. The SSIM and PSNR values 
obtained from the real and pseudo images were high. 
This study proved the possibility of generating 
pseudo images with high similarity to real images. 
The comparison of mean CT values revealed no 
significant difference between the real and pseudo 
images. Our study indicated that the GAN could 
accurately generate 120 kVp and Sn140 kVp CT 
images from 80 kVp CT images. 
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