1. Sung H, Ferlay J, Siegel RL, et al. (2021) Global cancer statistics 2020: GLOBOCAN estimates of ıncidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 71:209-249. [ DOI:10.3322/caac.21660] 2. Kontomanolis EN, Koutras A, Syllaios A, et al. (2020) Role of oncogenes and tumor-suppressor genes in carcinogenesis: A review. Anticancer Research, 40: 6009-6015. [ DOI:10.21873/anticanres.14622] 3. Li J and Liu C (2019) Coding or noncoding, the converging concepts of RNAs. Front Genet, 10: 496. [ DOI:10.3389/fgene.2019.00496] 4. Dhamija S and Menon MB (2018) Non-coding transcript variants of protein-coding genes - what are they good for? RNA Biol, 15: 1025-1031. [ DOI:10.1080/15476286.2018.1511675] 5. Lander ES , Birren B, Nusbaum C, et al. (2001) Initial sequencing and analysis of the human genome. Nature, 409(6822): 860-921. 6. Koning APJ, Gu W, Castoe TA, et al. (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet, 7(12): e1002384. [ DOI:10.1371/journal.pgen.1002384] 7. Criscione SW, Zhang Y, Thompson W, et al. (2014) Transcriptional landscape of repetitive elements in normal and cancer human cells. BMC Genomics, 215: 583. [ DOI:10.1186/1471-2164-15-583] 8. Jagannathan M, Cummings R, Yamashita YM (2018) A conserved function for pericentromeric satellite DNA. (2018) 7:e34122. DOI: [ DOI:10.7554/eLife.34122] 9. Eymery A, Horard B, El Atifi-Borel M, et al. (2009) A transcriptomic analysis of human centromeric and pericentric sequences in normal and tumor cells. Nucleic Acids Res, 37: 6340-6354. [ DOI:10.1093/nar/gkp639] 10. Ting D, Lipson D, Paul S, et al. (2011) Aberrant Overexpression of Satellite Repeats in Pancreatic and Other Epithelial Cancers. NIH Public Access, 331: 593-6. [ DOI:10.1126/science.1200801] 11. Bersani F, Lee E, Kharchenko PV, et al. (2015) Pericentromeric satellite repeat expansions through RNA-derived DNA intermediates in cancer. Proc Natl Acad Sci, 112: 15148-53. [ DOI:10.1073/pnas.1518008112] 12. Porter RL, Sun S, Flores MN, et al. (2022) Satellite repeat RNA expression in epithelial ovarian cancer associates with a tumor-immunosuppressive phenotype. J Clin Invest, 132(16): e155931. [ DOI:10.1172/JCI155931] 13. Nogalski MT and Shenk T (2020) HSATII RNA is induced via a noncanonical ATM-regulated DNA damage response pathway and promotes tumor cell proliferation and movement. PNAS, 117: 31891-31901. [ DOI:10.1073/pnas.2017734117] 14. Jolly C, Metz A, Govin J, et al. (2004) Stress-induced transcription of satellite III repeats. J Cell Biol, 164: 25-33. [ DOI:10.1083/jcb.200306104] 15. Metz A, Soret J, Vourc'h C, et al. (2004) A key role for stress-induced satellite III transcripts in the relocalization of splicing factors into nuclear stress granules. J Cell Sci, 117: 4551-8. [ DOI:10.1242/jcs.01329] 16. Valgardsdottir R, Chiodi I, Giordano M, et al. (2008) Transcription of Satellite III non-coding RNAs is a general stress response in human cells. Nucleic Acids Res, 36: 423-3477. [ DOI:10.1093/nar/gkm1056] 17. Goenka A, Sengupta S, Pandey R, et al. (2016) Human satellite-III non-coding RNAs modulate heat shock-induced transcriptional repression. J Cell Sci, 129: 3541-3552. [ DOI:10.1242/jcs.189803] 18. Dembinski, TC and Green CD (1983) Regulation of oestrogen responsiveness of MCF-7 human breast cancer cell growth by serum concentration in the culture medium. ın: fischer g, wieser rj (eds) hormonally defined media. proceedings in life sciences. Springer, Berlin, Heidelberg, pp439-442. [ DOI:10.1007/978-3-642-69290-1_67] 19. Plesca D, Mazumder S, Almasan A (2008) DNA damage response and apoptosis. Methods Enzymol, 446: 107-122. [ DOI:10.1016/S0076-6879(08)01606-6] 20. Kishikawa T, Otsuka M, Yoshikawa T, et al. (2016) Quantitation of circulating satellite RNAs in pancreatic cancer patients. JCI Insight, 1(8): e86646. [ DOI:10.1172/jci.insight.86646] 21. Peng C, Zhang Z, Wu J, et al. (2014) A critical role for ZDHHC2 in metastasis and recurrence in human hepatocellular carcinoma. Biomed Research International, 2014: 832712. [ DOI:10.1155/2014/832712] 22. Schmittgen TD and Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc, 3: 1101-8. [ DOI:10.1038/nprot.2008.73] 23. Chen Q and Yu X (2016) OGT restrains the expansion of DNA damage signaling. Nucleic Acids Res, 44: 9266-9278. [ DOI:10.1093/nar/gkw663] 24. Montecucco A, Zanetta F, Biamonti G (2015) Molecular mechanisms of etoposide. Excli J, 14: 95-108. 25. Chankova SG, Dimova E, Dimitrova M, Bryant PE (2007) Induction of DNA double-strand breaks by zeocin in Chlamydomonas reinhardtii and the role of increased DNA double-strand breaks rejoining in the formation of an adaptive response. Radiat Environ Biophys, 46: 409-16. [ DOI:10.1007/s00411-007-0123-2] 26. Muslimović A, Nyström S, Gao Y, Hammarsten O (2009) Numerical analysis of etoposide induced DNA breaks. PLoS One, 4(6): 2009. [ DOI:10.1371/annotation/290cebfd-d5dc-4bd2-99b4-f4cf0be6c838] 27. Penninckx S, Pariset E, Cekanaviciute E, Costes SV (2021) Quantification of radiation-induced DNA double strand break repair foci to evaluate and predict biological responses to ionizing radiation. NAR Cancer, 3: zcab046, 2021. [ DOI:10.1093/narcan/zcab046]
|