[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 1 (1-2024) ::
Int J Radiat Res 2024, 22(1): 103-109 Back to browse issues page
Secondary cancer risk estimation following prostate cancer radiotherapy through gEUD concept and NCRP-116 recommendations
S.H. Zoljalali Moghaddam , N. Eyvazzadeh , B. Rezakhaniha , H. Bagheri , H. Jalaei-Kho , H.R. Baghani , S.R. Mahdavi , M. Afshar Ardalan
Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran , drnazilaeyvazzade@gmail.com
Abstract:   (584 Views)
Background: Radiotherapy is one of the practical modalities in prostate cancer treatment, but there is a risk of developing secondary cancers caused by unintended radiation inside the non-target organs. The current study aimed to evaluate the risk of secondary cancer development in organs at risk (the bladder and rectum) following prostate cancer radiotherapy. Materials and Methods: A group of 39 patients with prostate cancer who were treated with 3-dimensional conformal radiotherapy (3D-CRT) were enrolled. A dose-volume histogram (DVH) corresponding to each patient was utilized to estimate the absorbed dose for the rectum and bladder and to calculate their respective generalized equivalent uniform dose (gEUD). Finally, the risk of secondary malignancies was estimated by employing the gEUD values and recommended risk factors by the National Council on Radiation Protection and Measurements (NCRP) 116. Results: The gEUD values for the rectum and bladder ranged from 50–75 and 25-80, respectively. The mean gEUD values for the rectum and bladder were correspondingly equal to 60.97 Sv and 53.74 Sv, respectively. The mean secondary cancer risk (SCR) value for the rectum was 30.4%, while about 16.1% was estimated for the bladder. The estimated SCR in the rectum was 1.88 times higher than in the bladder. Conclusions: The rectum is more exposed to radiation and is endangered by the development of secondary cancer following prostate cancer radiotherapy. Nevertheless, the probability of cancer incidence in the bladder was also considerable.
Keywords: Prostate cancer, radiotherapy, gEUD concept, secondary cancer, NCRP-116.
Full-Text [PDF 941 kb]   (313 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Bray F, Ferlay J, Soerjomataram I, et al. (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 68(6): 394-424. [DOI:10.3322/caac.21492]
2. Pishgar F, Ebrahimi H, Saeedi Moghaddam S, et al. (2018) Global, regional and national burden of prostate cancer, 1990 to 2015: results from the global burden of disease study 2015. The Journal of Urology, 199(5): 1224-32. [DOI:10.1016/j.juro.2017.10.044]
3. Moghaddam SHZ, Baghani HR, Mahdavi SR (2020) Construction and performance evaluation of a buildup bolus for breast intraoperative electron radiotherapy. Radiation Physics and Chemistry, 174: 108952. [DOI:10.1016/j.radphyschem.2020.108952]
4. Jermann M (2015) Particle therapy statistics in 2014. International Journal of Particle Therapy, 2(1): 50-4. [DOI:10.14338/IJPT-15-00013]
5. Preston D, Ron E, Tokuoka S, et al. (2007) Solid cancer incidence in atomic bomb survivors: 1958-1998. Radiation Research, 168(1): 1-64. [DOI:10.1667/RR0763.1]
6. Murray L, Henry A, Hoskin P, et al. (2014) Second primary cancers after radiation for prostate cancer: a systematic review of the clinical data and impact of treatment technique. Radiotherapy and Oncology, 110(2): 213-28. [DOI:10.1016/j.radonc.2013.12.012]
7. Baxter NN, Tepper JE, Durham SB, et al. (2005) Increased risk of rectal cancer after prostate radiation: a population-based study. Gastroenterology, 128(4): 819-24. [DOI:10.1053/j.gastro.2004.12.038]
8. Brenner DJ, Curtis RE, Hall EJ, Ron E (2000) Second malignancies in prostate carcinoma patients after radiotherapy compared with surgery. Cancer: Interdisciplinary International Journal of the American Cancer Society, 88(2): 398-406. https://doi.org/10.1002/(SICI)1097-0142(20000115)88:2<398::AID-CNCR22>3.0.CO;2-V [DOI:10.1002/(SICI)1097-0142(20000115)88:23.0.CO;2-V]
9. Davis EJ, Beebe‐Dimmer JL, Yee CL, Cooney KA (2014) Risk of second primary tumors in men diagnosed with prostate cancer: a population‐based cohort study. Cancer, 120(17): 2735-41. [DOI:10.1002/cncr.28769]
10. Dörr W and Herrmann T (2002) Cancer induction by radiotherapy: dose dependence and spatial relationship to irradiated volume. Journal of Radiological Protection, 22(3A): A117. [DOI:10.1088/0952-4746/22/3A/321]
11. Sánchez-Nieto B, Romero-Expósito M, Terrón JA, et al. (2018) Intensity-modulated radiation therapy and volumetric modulated arc therapy versus conventional conformal techniques at high energy: Dose assessment and impact on second primary cancer in the out-of-field region. Reports of Practical Oncology and Radiotherapy, 23(4): 251-9. [DOI:10.1016/j.rpor.2018.04.008]
12. Stokkevåg CH, Engeseth GM, Hysing LB, et al. (2017) The influence of inter-fractional anatomy variation on secondary cancer risk estimates following radiotherapy. Physica Medica, 42: 271-6. [DOI:10.1016/j.ejmp.2017.09.125]
13. Boulé TP, Fuentes MIG, Roselló JV, et al. (2009) Clinical comparative study of dose-volume and equivalent uniform dose based predictions in post radiotherapy acute complications. Acta Oncologica, 48(7): 1044-53. [DOI:10.1080/02841860903078513]
14. Niemierko A (1999) A generalized concept of equivalent uniform dose (EUD). Med Phys, 26(6): 1100.
15. Gulliford SL, Partridge M, Sydes MR, et al. (2012) Parameters for the Lyman Kutcher Burman (LKB) model of normal tissue complication probability (NTCP) for specific rectal complications observed in clinical practise. Radiotherapy and Oncology, 102(3): 347-51. [DOI:10.1016/j.radonc.2011.10.022]
16. Lyman JT (1985) Complication probability as assessed from dose-volume histograms. Radiation Research, 104(2s): S13-S9. [DOI:10.2307/3576626]
17. Semenenko V and Li X (2008) Lyman-Kutcher-Burman NTCP model parameters for radiation pneumonitis and xerostomia based on combined analysis of published clinical data. Physics in Medicine & Biology, 53(3): 737. [DOI:10.1088/0031-9155/53/3/014]
18. Meinhold CB (1993) Limitation of exposure to ionizing radiation: recommendations of the National Council on Radiation Protection and Measurements: NCRP.
19. De Marzi L, Feuvret L, Boulé T, et al. (2015) Use of gEUD for predicting ear and pituitary gland damage following proton and photon radiation therapy. The British Journal of Radiology, 88(1048): 20140413. [DOI:10.1259/bjr.20140413]
20. Niemierko A (1997) Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Medical Physics, 24(1): 103-10. [DOI:10.1118/1.598063]
21. Burman C, Kutcher G, Emami B, Goitein M (1991) Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys, 21(1): 123-35. [DOI:10.1016/0360-3016(91)90172-Z]
22. Emami B, Lyman J, Brown A, et al. (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys, 21(1): 109-22. [DOI:10.1016/0360-3016(91)90171-Y]
23. Chibani O and Ma CMC (2003) Photonuclear dose calculations for high‐energy photon beams from Siemens and Varian linacs. Medical physics, 30(8): 1990-2000. [DOI:10.1118/1.1590436]
24. Dong L, McGary J, Bellezza D, Berner B, Grant W (2000) Whole-body dose from Peacock-based IMRT treatment. Int J Radiat Oncol Biol Phys, 3(48): 342. [DOI:10.1016/S0360-3016(00)80489-7]
25. Followill D, Geis P, Boyer A (1997) Estimates of whole-body dose equivalent produced by beam intensity modulated conformal therapy. Int J Radiat Oncol Biol Phys, 38(3): 667-72. [DOI:10.1016/S0360-3016(97)00012-6]
26. Hall EJ, Martin SG, Amols H, Hei TK (1995) Photoneutrons from medical linear accelerators--radiobiological measurements and risk estimates. Int J Radiat Oncol Biol Phys, 33(1): 225-30. [DOI:10.1016/0360-3016(95)00092-D]
27. Meeks SL, Paulino AC, Pennington EC, et al. (2002) In vivo determination of extra-target doses received from serial tomotherapy. Radiotherapy and Oncology, 63(2): 217-22. [DOI:10.1016/S0167-8140(02)00074-9]
28. Mutic S and Low D (1998) Whole-body dose from tomotherapy delivery. Int J Radiat Oncol Biol Phys, 42(1): 229-32. [DOI:10.1016/S0360-3016(98)00199-0]
29. Verellen D and Vanhavere F (1999) Risk assessment of radiation-induced malignancies based on whole-body equivalent dose estimates for IMRT treatment in the head and neck region. Radiotherapy and Oncology, 53(3): 199-203. [DOI:10.1016/S0167-8140(99)00079-1]
30. Kry SF, Salehpour M, Followill DS, et al. (2005) The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys, 62(4): 1195-203. [DOI:10.1016/j.ijrobp.2005.03.053]
31. Suleiman SA, Salum SK, Masoud AO, et al. (2020) Monte Carlo simulation of non-target organ doses and radiation-induced secondary cancer risk in Tanzania from radiotherapy of nasopharyngeal by using Co-60 source. Radiation Physics and Chemistry, 171: 108731. [DOI:10.1016/j.radphyschem.2020.108731]
32. Zoljalali Moghaddam SH, Laripour R, Hazrati E, et al. (2022) Secondary cancers during the radiotherapy of prostate cancer: a review article. Tehran University Medical Journal TUMS Publications, 79(12): 915-24.
33. Hysing LB, Skorpen TN, Alber M, et al. (2008) Influence of organ motion on conformal vs. intensity-modulated pelvic radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys, 71(5): 1496-503. [DOI:10.1016/j.ijrobp.2008.04.011]
34. Zhu J, Simon A, Haigron P, et al. (2016) The benefit of using bladder sub-volume equivalent uniform dose constraints in prostate intensity-modulated radiotherapy planning. OncoTargets and Therapy, 9: 7537. [DOI:10.2147/OTT.S116508]
35. Brady LW and Yaeger TE (2013) Encyclopedia of radiation oncology. Covers the most recent developments in the field. [DOI:10.1007/978-3-540-85516-3]
36. Mazonakis M, Kachris S, Damilakis J (2020) Secondary bladder and rectal cancer risk estimates following standard fractionated and moderately hypofractionated VMAT for prostate carcinoma. Medical Physics, 47(7): 2805-13. [DOI:10.1002/mp.14169]
37. Stokkevåg CH, Engeseth GM, Hysing LB, et al. (2015) Risk of radiation-induced secondary rectal and bladder cancer following radiotherapy of prostate cancer. Acta Oncologica, 54(9): 1317-1325. [DOI:10.3109/0284186X.2015.1061691]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zoljalali Moghaddam S, Eyvazzadeh N, Rezakhaniha B, Bagheri H, Jalaei-Kho H, Baghani H, et al . Secondary cancer risk estimation following prostate cancer radiotherapy through gEUD concept and NCRP-116 recommendations. Int J Radiat Res 2024; 22 (1) :103-109
URL: http://ijrr.com/article-1-5220-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 1 (1-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4660