[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 2 (4-2024) ::
Int J Radiat Res 2024, 22(2): 303-308 Back to browse issues page
Accuracy evaluation of dose calculation of ISOgray treatment planning system in wedged treatment fields
S. Raghavi , H.R. Sadoughi , M.E. Ravari , M.A. Tajik Mansoury , M. Behmadi
Abstract:   (524 Views)
Background: It is essential to evaluate the accuracy of dose calculation for treatment planning systems (TPSs). This study's primary goal was to evaluate the accuracy of dose calculation for ISOgray TPS in the presence of a wedges in the treatment fields. Materials and Methods: GATE (Geant4 Application for Tomography Emission) as a Monte Carlo (MC) code was utilized to model the 6 MV photon beam of an Elekta Compact linac. It did MC code verification for three different field sizes and three depths for open, and wedged fields with gamma index tool. Following the confirmation, the percentage depth dose (PDD) and dose profile were calculated using the TPS and compared with the simulation results. In the next step, the TPS dose calculations for the 10×10cm2 field with different wedge angles were compared by the result from analytical formula. Results: The PDD and dose profiles for open fields met the gamma index criteria. However, there was disagreement for large wedged fields. The dose profiles of wedge angles using Petti analytical equation were compared to ISOgray dose profiles. Results showed that dose profile points with all wedge angles meet the gamma index criteria except for the 45˚ wedge angle. Conclusions: The results indicated that the disagreement between MC and TPS dose calculations increases by increasing wedge angle and field size. The uncertainty is due to TPS dose calculation algorithm causing noticeable disagreement. A MC-based TPS for dose calculation is recommended to reduce the error in dose calculation or at least medical physicist consider this issue.
Keywords: IMRT, Effective wedge angle, motorized wedge, radiotherapy planning, ISOgray, Monte Carlo method.
Full-Text [PDF 666 kb]   (198 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Hansen CR, Crijns W, Hussein M, et al. (2020) Radiotherapy treatment planning study guidelines (rating): A framework for setting up and reporting on scientific treatment planning studies. Radiother Oncol, 153: 67-78. [DOI:10.1016/j.radonc.2020.09.033]
2. Mesbahi A, Thwaites D, Reilly A (2006) Experimental and Monte Carlo evaluation of Eclipse treatment planning system for lung dose calculations. Rep Pract Oncol Radiother, 11: 123-33. [DOI:10.1016/S1507-1367(06)71057-4]
3. Wieslander E and Knöös T (2003) Dose perturbation in the presence of metallic implants: treatment planning system versus Monte Carlo simulations. Phys Med Biol, 48(20): 3295-305. [DOI:10.1088/0031-9155/48/20/003]
4. Ahnesjö A (1989) Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys, 16(4): 577-92. [DOI:10.1118/1.596360]
5. Ardu V, Broggi S, Cattaneo GM, et al. (2011) Dosimetric accuracy of tomotherapy dose calculation in thorax lesions. J Radiat Oncol, 6(1): 14. [DOI:10.1186/1748-717X-6-14]
6. Ahnesjö A and Aspradakis M (1999) Dose calculations for external photon beams in radiotherapy. Phys Med Biol, 44: R99-155. [DOI:10.1088/0031-9155/44/11/201]
7. Ding GX and Yu CW (2001) A study on beams passing through hip prosthesis for pelvic radiation treatment. Int J Radiat Oncol Biol Phys, 51(4): 1167-75. [DOI:10.1016/S0360-3016(01)02592-5]
8. Fippel M (1999) Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys, 26(8): 1466-75. [DOI:10.1118/1.598676]
9. Ma CM, Pawlicki T, Jiang SB, et al. (2000) Monte Carlo verification of IMRT dose distributions from a commercial treatment planning optimization system. Phys Med Biol, 45(9): 2483-95. [DOI:10.1088/0031-9155/45/9/303]
10. Miften M, Wiesmeyer M, Monthofer S, Krippner K (2000) Implementation of FFT convolution and multigrid superposition models in the focus RTP system. Phys Med Biol, 45(4): 817-33. [DOI:10.1088/0031-9155/45/4/301]
11. Chen W-Z, Xiao Y, Li J (2014) Impact of dose calculation algorithm on radiation therapy. World J Radiol, 6(11): 874-80. [DOI:10.4329/wjr.v6.i11.874]
12. Van Esch A, Tillikainen L, Pyykkonen J, et al. (2006) Testing of the analytical anisotropic algorithm for photon dose calculation. Med Phys, 33(11): 4130-48. [DOI:10.1118/1.2358333]
13. Hajizadeh Saffar M, Ghavamnasiri MR, Gholamhosseinian H (2004) Assessment of variation of wedge factor with depth, field size and SSD for Neptun 10PC Linac in Mashhad Imam Reza Hospital. Int J Radiat Res, 2(2): 53-8.
14. Geraily G, Mirzapour M, Mahdavi SR, et al. (2014) Monte Carlo study on beam hardening effect of physical wedges. Int J Radiat Res, 12(3): 249-56.
15. Behjati M, Sohrabpour M, Shirmardi SP, et al. (2018) Dosimetric verification of the Elekta motorized wedge. Arch Adv Biosci, 9(3): 32-41.
16. Dawod T (2015) Treatment planning validation for symmetric and asymmetric motorized wedged fields. Cancer Ther Oncol Int J, 3: 030118. [DOI:10.14319/ijcto.0301.18]
17. Gamit J, Nair S, Charan S, et al. (2020) Validation of motorized wedge effective isodose angle with a 2D array detector. Iran J Med Phys, 17(6): 380-5.
18. Petti PL and Siddon RL (1985) Effective wedge angles with a universal wedge. Phys Med Biol, 30(9): 985-91. [DOI:10.1088/0031-9155/30/9/010]
19. Tatcher M (1970) A method for varying the effective angle of wedge filters. Radiology, 97(1): 132. [DOI:10.1148/97.1.132]
20. Van der Laarse R, van Overbeek P, Strackee J (1984) Wedge filters for megavoltage roentgen ray beams. Acta Radiologica: Oncology, 23(6): 477-84. [DOI:10.3109/02841868409136052]
21. Almberg SS, Frengen J, Kylling A, Lindmo T (2012) Monte Carlo linear accelerator simulation of megavoltage photon beams: independent determination of initial beam parameters. Med Phys, 39(1): 40-7. [DOI:10.1118/1.3668315]
22. Grevillot L, Frisson T, Maneval D, et al. (2011) Simulation of a 6 MV Elekta Precise Linac photon beam using GATE/GEANT4. Phys Med Biol, 56: 903-18. [DOI:10.1088/0031-9155/56/4/002]
23. Sadoughi HR, Nasseri S, Momennezhad M, et al. (2014) A comparison between GATE and MCNPX Monte Carlo codes in simulation of medical linear accelerator. J Med Signals Sens, 4(1): 10-7. [DOI:10.4103/2228-7477.128433]
24. Sarrut D, Bardiès M, Boussion N, et al. (2014) A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. J Med Phys, 41(6Part1): 064301. [DOI:10.1118/1.4871617]
25. Verhaegen F and Seuntjens J (2003) Monte Carlo modelling of external radiotherapy photon beams. Phys Med Biol, 48(21): R107-64. [DOI:10.1088/0031-9155/48/21/R01]
26. Bahreyni Toossi MT, Behmadi M, Ghorbani M, Gholamhosseinian H (2013) A Monte Carlo study on electron and neutron contamination caused by the presence of hip prosthesis in photon mode of a 15 MV Siemens PRIMUS linac. J Appl Clin Med Phys, 14: 4253. [DOI:10.1120/jacmp.v14i5.4253]
27. Bahreyni-Toosi MT, Nasseri S, Momennezhad M, Hasanabadi F, Gholamhosseinian H (2014) Monte Carlo Simulation of a 6 MV X-Ray Beam for Open and Wedge Radiation Fields, Using GATE Code. J Med Signals Sens, 4(4): 267-73. [DOI:10.4103/2228-7477.144050]
28. Elhassan SE (2008) Evaluation of motorized wedge for a new generation telecobalt machine.
29. Kinhikar RA, Sharma S, Upreti R, et al. (2007) Characterizing and configuring motorized wedge for a new generation telecobalt machine in a treatment planning system. J Med Phys, 32(1): 29-33. [DOI:10.4103/0971-6203.31147]
30. Momennezhad M, Bahreyni Toosi MT, Sadeghi R, et al. (2010) A Monte Carlo simulation and dosimetric verification of physical wedges used in radiation therapy. Int J Radiat Res, 7(4): 223-7.
31. Acar H, Yavas G, Yavas C (2016) The impact of dose calculatıon algorıthms for perıpheral dose dıstrıbutıons of enhanced dynamıc and physıcal wedges. Int J Radiat Res, 14(1): 17-24. [DOI:10.18869/acadpub.ijrr.14.1.17]
32. Kumar R, Kar DC, Sharma SD, Mayya YS (2012) Design, implementation and validation of a motorized wedge filter for a telecobalt machine (Bhabhatron-II). Phys Med, 28(1): 54-60. [DOI:10.1016/j.ejmp.2011.03.001]
33. Das IJ, Ding GX, Ahnesjö A (2008) Small fields: nonequilibrium radiation dosimetry. Med Phys, 35(1): 206-15. [DOI:10.1118/1.2815356]
34. Shalek RJ (1977) Determination of Absorbed Dose in a Patient Irradiated by Beams of X or Gamma Rays in Radiotherapy Procedures. Med Phys, 4: 461. [DOI:10.1118/1.594356]
35. Maqbool M and Ahmad I (2007) Spectroscopy of gadolinium ion and disadvantages of gadolinium impurity in tissue compensators and collimators, used in radiation treatment planning. Spectrosc, 21: 581949. [DOI:10.1155/2007/581949]
36. Berris T, Mazonakis M, Stratakis J, et al. (2013) Calculation of organ doses from breast cancer radiotherapy: a Monte Carlo study. J Appl Clin Med Phys, 14(1): 4029. [DOI:10.1120/jacmp.v14i1.4029]
37. Howell RM, Scarboro SB, Taddei PJ, et al. (2010) Methodology for determining doses to in-field, out-of-field and partially in-field organs for late effects studies in photon radiotherapy. Phys Med Biol, 55(23): 7009-23. [DOI:10.1088/0031-9155/55/23/S04]
38. Venselaar J, Welleweerd H, Mijnheer B (2001) Tolerances for the accuracy of photon beam dose calculations of treatment planning systems. Radiother Oncol, 60(2): 191-201. [DOI:10.1016/S0167-8140(01)00377-2]
39. Wang L and Ding GX (2018) Estimating the uncertainty of calculated out-of-field organ dose from a commercial treatment planning system. J Appl Clin Med Phys, 19(4): 319-24. [DOI:10.1002/acm2.12367]
40. Fraass B, Doppke K, Hunt M, et al. (1998) American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: quality assurance for clinical radiotherapy treatment planning. Med Phys, 25(10): 1773-829. [DOI:10.1118/1.598373]
41. Nath R, Biggs PJ, Bova FJ, et al. (1994) AAPM code of practice for radiotherapy accelerators: report of AAPM Radiation Therapy Task Group No. 45. Med Phys, 21(7): 1093-121. [DOI:10.1118/1.597398]
42. Pasquino M, Borca VC, Tofani S, Ozzello F (2009) Verification of varian enhanced dynamic wedge implementation in MasterPlan treatment planning system. J Appl Clin Med Phys, 10(2): 11-20. [DOI:10.1120/jacmp.v10i2.2867]
43. Anon (1987) Determination of absorbed dose in a patient irradiated by beams of X or gamma rays in radiotherapy procedures ICRU report 24. United States: ICRU; 1987.
Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Raghavi S, Sadoughi H, Ravari M, Tajik Mansoury M, Behmadi M. Accuracy evaluation of dose calculation of ISOgray treatment planning system in wedged treatment fields. Int J Radiat Res 2024; 22 (2) :303-308
URL: http://ijrr.com/article-1-5413-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 2 (4-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4660