1. 1. Sun W, Lee O, Shin Y, et al. (2014) Wi-Fi could be much more. IEEE Commun Mag, 52:22-29. [ DOI:10.1109/MCOM.2014.6957139] 2. Kesari KK, Agarwal A, Henkel R (2018) Radiations and male fertility. Reprod Biol Endocrinol, 16:118. [ DOI:10.1186/s12958-018-0431-1] 3. Jaffar FHF, Osman K, Hui CK, et al. (2019) Adverse Effects of Wi-Fi Radiation on Male Reproductive System: A Systematic Review. Tohoku J Exp Med, 248:169-179. [ DOI:10.1620/tjem.248.169] 4. Aldahhan RA and Stanton PG (2021) Heat stress response of somatic cells in the testis. Mol Cell Endocrinol, 527:111216. [ DOI:10.1016/j.mce.2021.111216] 5. Jaffar FHF, Osman K, Hui CK, Zulkefli AF, Ibrahim SF (2022) Long-Term Wi-Fi Exposure from Pre-Pubertal to Adult Age on the Spermatogonia Proliferation and Protective Effects of Edible Bird's Nest Supplementation. Front Physiol, 13:1-11. [ DOI:10.3389/fphys.2022.828578] 6. Feng CW, Bowles J, Koopman P (2014) Control of mammalian germ cell entry into meiosis. Mol Cell Endocrinol, 382:488-497. [ DOI:10.1016/j.mce.2013.09.026] 7. Shahin S, Mishra V, Singh SP, Chaturvedi CM (2014) 2.45-GHz microwave irradiation adversely affects reproductive function in male mouse, Mus musculus by inducing oxidative and nitrosative stress. Free Radic Res, 48:511-525. [ DOI:10.3109/10715762.2014.888717] 8. Saygin M, Asci H, Ozmen O, et al. (2016) Impact of 2.45GHz microwave radiation on the testicular inflammatory pathway biomarkers in young rats: the role of gallic acid. Environ Toxicol, 31: 1771-1784. [ DOI:10.1002/tox.22179] 9. Atasoy HI, Gunal MY, Atasoy P, et al. (2019) Immunohistopathologic demonstration of deleterious effects on growing rat testes of radiofrequency waves emitted from conventional Wi-Fi devices. J Pediatr Urol, 9:223-229. [ DOI:10.1016/j.jpurol.2012.02.015] 10. Kovačić Petrović Z, Peraica T, Kozarić-Kovačić D, Palavra IR (2022) Internet use and internet-based addictive behaviours during coronavirus pandemic. Curr Opin Psychiatry, 35:324-331. [ DOI:10.1097/YCO.0000000000000804] 11. Quek MC, Chin NL, Yusof YA, et al. (2018) Characterization of edible bird's nest of different production, species and geographical origins using nutritional composition, physicochemical properties and antioxidant activities. Food Res Int, 109:35-43. [ DOI:10.1016/j.foodres.2018.03.078] 12. Wang CY, Cheng LJ, Shen B, et al. (2019) Antihypertensive and Antioxidant Properties of Sialic Acid, the Major Component of Edible Bird's Nests. Curr Top Nutraceutical Res, 17:376-379. [ DOI:10.37290/ctnr2641-452X.17:376-379] 13. Kuntjoro S and Rachmadiarti F (2020) Preference swiftlet bird (Aerodramus fuciphagus) nesting at different sites in an effort to in-crease nest production. J Phys: Conf Ser, 1569:1-6. [ DOI:10.1088/1742-6596/1569/4/042083] 14. Thorburn C (2014) The edible birds' nest boom in Indonesia and South-east Asia: a nested political ecology. Food Cult Soc, 17:535-553. [ DOI:10.2752/175174414X14006746101439] 15. Saygin M, Asci H, Ozmen O, et al. (2015) Impact of 2.45 GHz microwave radiation on the testicular inflammatory pathway biomarkers in young rats: The role of gallic acid. Environ Toxicol, 31: 1771-1784. [ DOI:10.1002/tox.22179] 16. Ding SS, Sun P, Zhang Z, et al. (2018) Moderate dose of trolox preventing the deleterious effects of Wi-Fi radiation on spermatozoa in vitro through reduction of oxidative stress damage. Chin Med J, 131:402-412. [ DOI:10.4103/0366-6999.225045] 17. Jamshid M and Bahram P (2018) Effect of hydroalcoholic extract of nasturtium officinalis on oxidative and antioxidant indices caused by electromagnetic radiation emitted from wi-fi routers. J Fundam Appl Sci, 10: 464-474. 18. Jaffar FHF, Osman K, Hui CK, et al. (2021) Edible bird's nest supplementation improves male reproductive parameters of sprague dawley rat. Front Pharmacol, 12:1-6. [ DOI:10.3389/fphar.2021.631402] 19. Koksal M, Oğuz E, Baba F, et al. (2012) Effects of melatonin on testis histology, oxidative stress and spermatogenesis after experimental testis ischemia-reperfusion in rats. Eur Rev Med Pharmacol Sci, 16:582-588. 20. Kim MJ, Kwon MJ, Kang HS, et al. (2018) Identification of Phosphohistone H3 cut off values corresponding to original WHO grades but distinguishable in well-differentiated gastrointestinal neuroendocrine tumors. Biomed Res Int, 2018:1-10. [ DOI:10.1155/2018/1013640] 21. World Health Organization (2010) WHO Laboratory Manual for the Examination and Processing of Human Semen. 5th ed. WHO Press, Geneva, Switzerland. [ DOI:10.1038/aja.2008.57] 22. Rahimipour M, Talebi AR, Anvari M, et al. (2013) Effects of different doses of ethanol on sperm parameters, chromatin structure and apoptosis in adult mice. Eur J Obstet Gynecol Reprod Biol, 170: 423-428. [ DOI:10.1016/j.ejogrb.2013.06.038] 23. Pizzino G, Irrera N, Cucinotta M, et al. (2017) Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev, 2017:1-13. [ DOI:10.1155/2017/8416763] 24. Jonwal C, Sisodia R, Saxena VK, Kesari KK (2018) Effect of 2.45 GHz microwave radiation on the fertility pattern in male mice. Gen Physiol Biophys, 37:453-460. [ DOI:10.4149/gpb_2017059] 25. Kesari KK and Behari J (2010) Effects of microwave at 2.45 GHz radiations on reproductive system of male rats. Toxicol Environ Chem, 92:135-1147. [ DOI:10.1080/02772240903233637] 26. Behari J (2010) Biological responses of mobile phone frequency exposure. Indian J Exp Biol, 48: 959-981. 27. Ramaswamy H and Tang J (2010) Microwave and radio frequency heating. Food Sci Technol Int, 14:423-427. [ DOI:10.1177/1082013208100534] 28. Yakymenko I, Tsybulin O, Sidorik E, et al. (2015) Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med 35:186-202. [ DOI:10.3109/15368378.2015.1043557] 29. Dharmaraja AT and Chakrapani H (2014) A small molecule for controlled generation of reactive oxygen species (ROS). Org Lett, 16:398-401. [ DOI:10.1021/ol403300a] 30. Agarwal A, Gupta S, Sharma R (2016) Reactive oxygen species (ROS) measurement. In: Andrological Evaluation of Male Infertility, (Agarwal A, Gupta S, Sharma R, eds.), Springer, Cham, Switzerland. [ DOI:10.1007/978-3-319-26797-5] 31. De Iuliis GN, Thomson LK, Mitchell LA, et al. (2009) DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2′-deoxyguanosine, a marker of oxidative stress. Biol Reprod, 81:517-524. [ DOI:10.1095/biolreprod.109.076836] 32. Sharma R, Martinez MP, Agarwal A (2020) Sperm chromatin integrity tests and indications. In: Male Infertility, (Parekattil S, Esteves S, Agarwal A. eds.), Springer, Cham, Switzerland. [ DOI:10.1007/978-3-030-32300-4_8] 33. Alipour F, Jalali M, Nikravesh MR, et al. (2018) Assessment of sperm morphology, chromatin integrity, and catSper genes expression in hypothyroid mice. Acta Biol Hung, 69:244-258. [ DOI:10.1556/018.68.2018.3.2] 34. Pourmasumi S, Khoradmehr A, Rahiminia T, et al. (2019) Evaluation of sperm chromatin integrity using aniline blue and toluidine blue staining in infertile and normozoospermic men. J Reprod Infertil, 20:95-101. 35. Avendaño C, Mata A, Sarmiento CAS, Doncel GF (2012) Use of laptop computers connected to internet through Wi-Fi de-creases human sperm motility and increases sperm DNA fragmentation. Fertil Steril, 97:39-45.e2. [ DOI:10.1016/j.fertnstert.2011.10.012] 36. Ding SS, Ping S, Hong T (2018) Association between daily exposure to electromagnetic radiation from 4G smartphone and 2.45 GHz Wi-Fi and oxidative damage to semen of males attending a genetics clinic: a primary study. Int J Clin Exp Med, 11:2821-2830. 37. Saygin M, Caliskan S, Karahan N, et al. (2011) Testicular apoptosis and histopathological changes induced by a 2.45 GHz electromagnetic field. Toxicol Ind Health, 27:455-463. [ DOI:10.1177/0748233710389851] 38. Mahmoudi R, Mortazavi S, Safari S, et al. (2015) Effects of microwave electromagnetic radiations emitted from common Wi-Fi routers on rats' sperm count and motility. Int J Radiat Res, 13:363-368. 39. Shokri S, Soltani A, Kazemi M, et al. (2015) Effects of Wi-Fi (2.45 GHz) exposure on apoptosis, sperm pa-rameters and testicular histomorphometry in rats: a time course study. Cell J, 17:322-331. 40. Dasdag S, Taş M, Akdag MZ, Yegin K (2015) Effect of long-term exposure of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on testes functions. Electromagn Biol Med, 34:37-42. [ DOI:10.3109/15368378.2013.869752] 41. Minutoli L, Puzzolo D, Rinaldi M, et al. (2016) ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxid Med Cell Longev, 2016:1-10. [ DOI:10.1155/2016/2183026] 42. Yi W, Xiang-Liang T, Yu Z, et al. (2018) DEHP exposure destroys blood testis barrier (BTB) integrity of immature testes through excessive ROS mediated autophagy. Genes Dis, 5:263-274. [ DOI:10.1016/j.gendis.2018.06.004] 43. Naz T, Chakraborty S, Saha S (2022) Role of fatty acids and calcium in male Reproduction. Reprod Dev Med, 6:57-64. [ DOI:10.1097/RD9.0000000000000003] 44. Ozmen O and Kavrik O (2020) Ameliorative effects of vitamin C against hepatic pathology related to Wi-Fi (2.45 GHz electromagnetic radiation) in rats. Int J Radiat Res, 18:405-412. 45. Moradpour R, Shokri M, Abedian S, et al. (2020) The protective effect of melatonin on liver damage induced by mobile phone radiation in mice model. Int J Radiat Res, 18:133-141 46. Jelodar G, Akbari A, Parvaeei P, Nazii S (2018) Vitamin E protects rat testis, eye and erythrocyte from oxidative stress during exposure to radiofrequency wave generated by a BTS antenna model. Int J Radiat Res, 16:217-224. 47. Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C, 27:120-139. [ DOI:10.1080/10590500902885684] 48. Ghassem M, Arihara K, Mohammadi S, et al. (2017) Identification of two novel antioxidant peptides from edi-ble bird's nest (Aerodramus fuciphagus) protein hydrolysates. Food Funct, 8:2046-2052. [ DOI:10.1039/C6FO01615D] 49. Lu Y, Han DB, Wang JY, et al. (1995) Study on The Main Ingredients of The Three Species of Edible Swift's Nest of Yunnan Province. Zool Res, 16:385-391. 50. Blaner WS, Shmarakov IO, Traber MG (2021) Vitamin A and vitamin E: Will the real antioxidant please stand up? Annu Rev Nutr, 41:105-131. [ DOI:10.1146/annurev-nutr-082018-124228] 51. Tagliaferri S, Porri D, De Giuseppe R, et al. (2019) The controversial role of vitamin D as an anti-oxidant: results from randomised controlled trials. Nutr Res Rev, 32:99-105. [ DOI:10.1017/S0954422418000197] 52. Nowak D, Gośliński M, Wojtowicz E, Przygoński K (2018) Antioxidant properties and phenolic compounds of vitamin C-rich juices. J Food Sci, 83:2237-2246. [ DOI:10.1111/1750-3841.14284] 53. Aitken RJ and Roman SD (2008) Antioxidant systems and oxidative stress in the testes. Oxid Med Cell Longev, 1:15-24. [ DOI:10.4161/oxim.1.1.6843] 54. Looi QH and Omar AR (2016) Swiftlets and edible bird's nest industry in Asia. PJSRR 2:32-48.
|