1. 1. McGuire S (2015) World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press. Adv Nutr, 7: 418-9. [ DOI:10.3945/an.116.012211] 2. Sung H, Ferlay J, Siegel RL, et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 71:209-249. [ DOI:10.3322/caac.21660] 3. Page S, Milner-Watts C, Perna M, et al. (2020) Systemic treatment of brain metastases in non-small cell lung cancer. Eur J Cancer, 132:187-198. [ DOI:10.1016/j.ejca.2020.03.006] 4. Sperduto PW, Kased N, Roberge D, et al. (2012) Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. J Clin Oncol, 30:419e25. [ DOI:10.1200/JCO.2011.38.0527] 5. Sacks P and Rahman M (2020) Epidemiology of brain metastases. Neurosurg Clin N A, 31:481-488. [ DOI:10.1016/j.nec.2020.06.001] 6. Wen Q, Yue Y, Shang J, et al. (2021) The application of dual-layer spectral detector computed tomography in solitary pulmonary nodule identification. Quant Imaging Med Surg, 11:521-532. [ DOI:10.21037/qims-20-2] 7. Fehrenbach U, Kahn J, Böning G, et al. (2019) Spectral CT and its specific values in the staging of patients with non-small cell lung cancer: technical possibilities and clinical impact. Clin Radiol, 74456-466. [ DOI:10.1016/j.crad.2019.02.010] 8. Zhu Q, Ren C, Zhang Y, et al. (2020) Comparative imaging study of mediastinal lymph node from pre-surgery dual energy CT versus post-surgeron verifications in non-small cell lung cancer patients. J Peking Univ Health Sci, 52: 730-737. 9. Zhang G, Cao Y, Zhang J, et al. (2021) Epidermal growth factor receptor mutations in lung adenocarcinoma: associations between dual-energy spectral CT measurements and histologic results. J Cancer Res Clin Oncol, 147:1169-1178. [ DOI:10.1007/s00432-020-03402-8] 10. Li Q, Li X, Li XY, et al. (2020) Spectral CT in Lung Cancer: Usefulness of Iodine Concentration for Evaluation of Tumor Angiogenesis and Prognosis. AJR Am J Roentgenol, 215:595-602. [ DOI:10.2214/AJR.19.22688] 11. Yu Y, Cheng JJ, Li JY, et al. (2020) Determining the invasiveness of pure ground-glass nodules using dual-energy spectral computed tomography. Transl Lung Cancer Res, 9: 484-495. [ DOI:10.21037/tlcr.2020.03.33] 12. Lambin P, Rios-Velazquez E, Leijenaar R, et al. (2012) Radiomics: extracting more information from medical images using advanced feature analysis [J]. Eur J Cancer, 48:441-446. [ DOI:10.1016/j.ejca.2011.11.036] 13. Song J, Yin Y, Wang H, et al. (2020) A review of original articles published in the emerging field of radiomics[J]. Eur J Radiol, 127: 108991. [ DOI:10.1016/j.ejrad.2020.108991] 14. Sun F, Chen Y, Chen X, et al. (2021) CT-based radiomics for predicting brain metastases as the first failure in patients with curatively resected locally advanced non-small cell lung cancer. Eur J Radiol, 134:109411. [ DOI:10.1016/j.ejrad.2020.109411] 15. Lennartz S, Mager A, Große Hokamp N, et al. (2021) Texture analysis of iodine maps and conventional images for k-nearest neighbor classification of benign and metastatic lung nodules. Cancer Imaging, 21:17. [ DOI:10.1186/s40644-020-00374-3] 16. Yang F, Dong J, Wang X, et al. (2017) Non-small cell lung cancer: Spectral computed tomography quantitative parameters for preoperative diagnosis of metastatic lymph nodes. Eur J Radiol, 89:129-135. [ DOI:10.1016/j.ejrad.2017.01.026] 17. Yue D, Ru Xin W, Jing C, et al. (2017) Virtual monochromatic spectral imaging for the evaluation of vertebral inconspicuous osteoblastic metastases from lung. Acta Radiol, 58:1485-1492. [ DOI:10.1177/0284185117694511] 18. Won YW, Joo J, Yun T, et al. (2015) A nomogram to predict brain metastasis as the first relapse in curatively resected non-small cell lung cancer patients. Lung Cancer, 88: 201-7. [ DOI:10.1016/j.lungcan.2015.02.006] 19. Wang H, Wang Z, Zhang G, et al. (2020) Driver genes as predictive indicators of brain metastasis in patients with advanced NSCLC: EGFR, ALK, and RET gene mutations. Cancer Med, 9:487-495. [ DOI:10.1002/cam4.2706] 20. Sung P, Yoon SH, Kim J, et al. (2021) Bronchovascular bundle thickening on CT as a predictor of survival and brain metastasis in patients with stage IA peripheral small cell lung cancer. Clin Radiol, 76:76.e37-76.e46. [ DOI:10.1016/j.crad.2020.08.018] 21. Hwang KE, Oh SJ, Park C, et al. (2018) Computed tomography morphologic features of pulmonary adenocarcinoma with brain/bone metastasis. Korean J Intern Med, 33:340-346. [ DOI:10.3904/kjim.2016.134] 22. Wei XG, Bi KW, Li B (2021) Phenotypic Plasticity Conferred by the Metastatic Microenvironment of the Brain Strengthens the Intracranial Tumorigenicity of Lung Tumor Cells. Front Oncol, 11: 637911. [ DOI:10.3389/fonc.2021.637911] 23. Chen J, Liu A, Lin Z, et al. (2020) Downregulation of the circadian rhythm regulator HLF promotes multiple-organ distant metastases in non-small cell lung cancer through PPAR/NF-κb signaling. Cancer Lett, 482: 56-71. [ DOI:10.1016/j.canlet.2020.04.007] 24. Zhang J, Jin J, Ai Y, Zhu K, Xiao C, Xie C, Jin X. (2021) Computer Tomography Radiomics-Based Nomogram in the Survival Prediction for Brain Metastases From Non-Small Cell Lung Cancer Underwent Whole Brain Radiotherapy. Front Oncol, 10:610691. [ DOI:10.3389/fonc.2020.610691] 25. Zhao S, Hou D, Zheng X, et al. (2021) MRI radiomic signature predicts intracranial progression-free survival in patients with brain metastases of ALK-positive non-small cell lung cancer. Transl Lung Cancer Res, 10: 368-380. [ DOI:10.21037/tlcr-20-361] 26. Huang Y, Liu Z, He L, et al. (2016) Radiomics Signature: A Potential Biomarker for the Prediction of Disease-Free Survival in Early-Stage (I or II) Non-Small Cell Lung Cancer. Radiology, 281:947-957 [ DOI:10.1148/radiol.2016152234] 27. Chen A, Lu L, Pu X, et al. (2019) CT-Based Radiomics Model for Predicting Brain Metastasis in Category T1 Lung Adenocarcinoma. AJR Am J Roentgenol, 213:134-139. [ DOI:10.2214/AJR.18.20591]
|