[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 23, Issue 1 (1-2025) ::
Int J Radiat Res 2025, 23(1): 37-43 Back to browse issues page
Cytogenetic and cytotoxic effects of melatonin and saffron on lymphocytes of luminal A and luminal B breast cancer patients irradiated in vitro
H. Mozdarani , S. Mozdarani , F. Pakniyat , S. Mozdarani , H. Nosrati
Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran , mozdarani@modares.ac.ir
Abstract:   (413 Views)
Background: Due to high radiation- sensitivity of breast cancer (BC) patients, use of radioprotectors to ameliorate the deleterious effects of radiation could be a priority. This study aimed to evaluate the reducing effects of saffron and melatonin on ionizing radiation-induced damages in lymphocytes of luminal A & B BC patients using cytome assay. Materials and Methods: Whole blood samples were collected from BC patients as well as healthy individuals. Cells were treated with either melatonin or saffron two hours prior to irradiation of G0 lymphocytes using a 6 MV linear accelerator, at a dose of 3Gy. Thirty-six hours after PHA stimulation, Cytochalasin-B was added to the cultures. Cell harvesting and staining was performed using standard method. 1000 binucleate cells were scored per sample for the frequency of micronuclei (MN) or apoptosis under a 1000x light microscope. Results: The frequency of background MN was significantly lower in normal individuals compared to BC patients. Pretreatments of "saffron and melatonin" alone made no significant changes in the frequency of MN in all groups. However, after 3Gy-irradiation the frequency of MN elevated dramatically (p<0.01). Pretreatment of lymphocytes with melatonin and saffron led to a decrease in the frequency of MN in all treatment groups (p<0.05). In terms of apoptosis induction, only melatonin was found to exert reducing effect on radiation induced apoptosis. No radioprotection was observed for saffron in lymphocytes of BC patients. Conclusion: Obtained results elucidated more pronounced role of melatonin in decreasing MN and apoptosis frequencies post irradiation in lymphocytes of BC patients.
Keywords: Cytome assay, breast cancer, lymphocytes, antioxidants, ionizing radiation, radioprotection.
Full-Text [PDF 1032 kb]   (75 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn H-J (2011) Strategies for subtypes-dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer. Annals of Oncology, 22(8): 1736-47. [DOI:10.1093/annonc/mdr304]
2. Prat A, Pineda E, Adamo B, Galván P, Fernández A, Gaba L, et al. (2015). Clinical implications of the intrinsic molecular subtypes of breast cancer. The Breast, 24(Suppl 2), S26-S35. [DOI:10.1016/j.breast.2015.07.008]
3. Huang L, Snyder AR, Morgan WF (2003) Radiation-induced genomic instability and its implications for radiation carcinogenesis. Oncogene, 22(37): 5848-54. doi: 10.1038/sj.onc.1206697. PMID: 12947391. [DOI:10.1038/sj.onc.1206697]
4. Mozdarani H (2016) Breast cancer and paradigm of genomic instability. Arch Breast Cancer, 3 (4): 102-105.
5. Scott D (1999) Increased chromosomal radiosensitivity in breast cancer patients: a comparison of two assays. Int J Radiati Biol, 75(1): 1-10. [DOI:10.1080/095530099140744]
6. Shahidi M, Mozdarani H, Bryant PE (2007) Radiation sensitivity of leukocytes from healthy individuals and breast cancer patients as measured by the alkaline and neutral comet assay. Cancer Letters, 257: 263-273. [DOI:10.1016/j.canlet.2007.08.002]
7. El-Nachef L, Al-Choboq J, Restier-Verlet J, Granzotto A, Berthel E, Sonzogni L, et al. (2021) Human Radiosensitivity and Radiosusceptibility: What Are the Differences? Int J Mol Sci, 22(13): 7158. [DOI:10.3390/ijms22137158]
8. Mozdarani H, Salimi M, Bakhtari N (2017) Inherent radiosensitivity and its impact on breast cancer chemo-radiotherapy. Int J Radiat Res, 15(4): 325-41.
9. Sies H and Jones DP (2022) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol, 23(6): 363-381. [DOI:10.1038/s41580-021-00455-6]
10. Salimi M and Mozdarani H (2015) Different aspects of cytochalasin B Blocked micronucleus cytome (CBMN cyt) assay as a comprehensive measurement tool for radiobiological studies, biological dosimetry and genome instability. Int J Radiat Res, 13(2): 101-126.
11. Fenech M (2020) Cytokinesis-Block Micronucleus Cytome Assay Evolution into a More Comprehensive Method to Measure Chromosomal Instability. Genes, 11(10): 1203. [DOI:10.3390/genes11101203]
12. Montoro A, Obrador E, Mistry D, Forte GI, Bravatà V, Minafra L, et al. (2023) Radioprotectors, Radiomitigators, and Radiosensitizers. in Radiobiology textbook; Sarah Baatout (ed.); pp: 571-628, Springer. [DOI:10.1007/978-3-031-18810-7_11]
13. Najafi M, Shirazi A, Motevaseli E, Rezaeyan A, Salajegheh A, Rezapoor S (2017) Melatonin as an anti-inflammatory agent in radiotherapy. Inflammopharmacology, 25(4): 403-13. [DOI:10.1007/s10787-017-0332-5]
14. Farhood B, Goradel N, Mortezaee K, Khanlarkhani N, Salehi E, Nashtaei M, et al. (2019) Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization. Clinical and Translational Oncology, 21(3): 268-79. [DOI:10.1007/s12094-018-1934-0]
15. Mediavilla MD, Sanchez-Barcelo EJ, Tan DX, Manchester L, Reiter RJ (2010) Basic mechanisms involved in the anti-cancer effects of melatonin. Curr Med Chem, 17(36): 4462-4481. [DOI:10.2174/092986710794183015]
16. Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castroviejo D, Qin L, Yang SF, et al. (2017) Melatonin, a full-service anti-cancer agent: inhibition of initiation, progression and metastasis. Int J Mol Sci, 18(4): 843. [DOI:10.3390/ijms18040843]
17. Sanchez-Barcelo EJ, Mediavilla MD, Alonso-Gonzalez C, Reiter RJ (2012) Melatonin uses in oncology: breast cancer prevention and reduction of the side effects of chemotherapy and radiation. Expert Opin Investig Drugs, 21(6): 819-831. [DOI:10.1517/13543784.2012.681045]
18. Galano A, Tan DX, Reiter RJ (2011) Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res, 51(1): 1-16. [DOI:10.1111/j.1600-079X.2011.00916.x]
19. Rodriguez C, Mayo JC, Sainz RM, Antolín I, Herrera F, Martín V, et al. (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res, 36(1): 1-9. [DOI:10.1046/j.1600-079X.2003.00092.x]
20. Huang CC, Lai CJ, Tsai MH, Wu YC, Chen KT, Jou MJ, et al. (2015) Effects of melatonin on the nitric oxide system and protein nitration in the hypobaric hypoxic rat hippocampus. BMC Neurosci, 16: 61. [DOI:10.1186/s12868-015-0199-6]
21. Johnke RM, Sattler JA, Allison RR (2014) Radioprotective agents for radiation therapy: future trends. Future Oncol, 10(15):2345 -2357. [DOI:10.2217/fon.14.175]
22. Skourtis G, Krontira A, Ntaoula S, Ferlemi AV, Zeliou K, Georgakopoulos C, et al. (2020) Protective antioxidant effects of saffron extract on retinas of streptozotocin-induced diabetic rats. Romanian Journal of Ophthalmology, 64(4): 394. [DOI:10.22336/rjo.2020.61]
23. Premkumar K, Thirunavukkarasu C, Abraham SK, Santhiya ST, Ramesh A (2006) Protective effect of saffron (Crocus sativus L.) aqueous extract against genetic damage induced by anti-tumor agents in mice. Hum Exp Toxicol, 25(2):79-84. [DOI:10.1191/0960327106ht589oa]
24. Farahmand SK, Samini F, Samini M, Samarghandian S (2013) Safranal ameliorates antioxidant enzymes and suppresses lipid peroxidation and nitric oxide formation in aged male rat liver. Biogerontology, 14: 63-71. [DOI:10.1007/s10522-012-9409-0]
25. Samarghandian S, Afshari JT, Davoodi S (2011) Suppression of pulmonary tumor promotion and induction of apoptosis by Crocus sativus L. extraction. Appl Biochem Biotechnol, 164: 238-247. [DOI:10.1007/s12010-010-9130-x]
26. Samarghandian S and Borji A (2014) Anticarcinogenic effect of saffron (Crocus sativus L.) and its ingredients. Pharmacogn Res, 6: 99-107. [DOI:10.4103/0974-8490.128963]
27. Fenech M (2010) The lymphocyte cytokinesis-block micronucleus cytome assay and its application in radiation biodosimetry. Health Physics, 98(2): 234-43. [DOI:10.1097/HP.0b013e3181b85044]
28. Hadizadeh F, Mohajeri S, Seifi M (2010) Extraction and purification of crocin from saffron stigmas employing a simple and efficient crystallization method. Pak J Biol Sci, 13(14): 691-8. [DOI:10.3923/pjbs.2010.691.698]
29. Escala CRA, Muñoz GM, Hernández AO, de Salas MS, Muñoz MAG, Ampuero JC, et al. (2020) Identifying the best Ki67 cut-off for determining luminal breast cancer subtypes using immunohistochemical analysis and PAM50 genomic classification. Open Archive ESMO Annals of Oncology, 31 (Supplement 4): S327 [DOI:10.1016/j.annonc.2020.08.337]
30. Inic Z, Zegarac M, Inic M, Markovic I, Kozomara Z, Djurisic I, et al. (2014) Difference between luminal A and luminal B subtypes according to Ki-67, tumor size, and progesterone receptor negativity providing prognostic information. Clinical Medicine Insights: Oncology, 8: S18006. [DOI:10.4137/CMO.S18006]
31. Fenech M (2020) Cytokinesis-Block micronucleus cytome assay evolution into a more comprehensive method to measure chromosomal instability. Genes, 11(10): 1203. [DOI:10.3390/genes11101203]
32. Mozdarani H, Ziaee Mashhadi A, Alimohammadi (2011) G2 chromosomal radiosensitivity and background frequency of sister chromatid exchanges of peripheral blood lymphocytes of breast cancer patients. Int J Radiat Res, 9 (3): 167-174.
33. Mozdarani H, Mansouri Z, Haeri SA (2005) Cytogenetic radiosensitivity of g0-lymphocytes of breast and esophageal cancer patients as determined by micronucleus assay. J Radiat Res, 46(1): 111-6. [DOI:10.1269/jrr.46.111]
34. Colleu-Durel S, Guitton N, Nourgalieva K, Legue F, Leveque J, Danic B, et al. (2004) Alkaline single-cell gel electrophoresis (comet assay): a simple technique to show genomic instability in sporadic breast cancer. Eur J Can, 40(3): 445-51. [DOI:10.1016/j.ejca.2003.09.033]
35. Parshad R, Price F, Bohr V, Cowans K, Zujewski J, Sanford K (1996) Deficient DNA repair capacity, a predisposing factor in breast cancer. Br J Can, 74(1):1-5. [DOI:10.1038/bjc.1996.307]
36. Youlden DR, Cramb SM, Dunn NA, Muller JM, Pyke CM, Baade PD (2012) The descriptive epidemiology of female breast cancer: an international comparison of screening, incidence, survival and mortality. Cancer Epidemiol, 36(3): 237-48. [DOI:10.1016/j.canep.2012.02.007]
37. Smart V, Curwen G, Whitehouse C, Edwards A, Tawn E (2003) Chromosomal radiosensitivity: a study of the chromosomal G2 assay in human blood lymphocytes indicating significant inter-individual variability. Mut Res/Fund Mol Mech Mutagen, 528(1-2): 105-10. [DOI:10.1016/S0027-5107(03)00076-9]
38. Baeyens A, Thierens H, Claes K, Poppe B, Messiaen L, De Ridder L, et al. (2002) Chromosomal radiosensitivity in breast cancer patients with a known or putative genetic predisposition. Br J cancer, 87(12): 1379-85. [DOI:10.1038/sj.bjc.6600628]
39. Vral A, Thierens H, Baeyens A, De Ridder L (2002) The micronucleus and G2-phase assays for human blood lymphocytes as biomarkers of individual sensitivity to ionizing radiation: limitations imposed by intraindividual variability. Radiat Res, 157(4): 472-7. [DOI:10.1667/0033-7587(2002)157[0472:TMAGPA]2.0.CO;2]
40. Poggioli T, Sterpone S, Palma S, Cozzi R, Testa A (2010) G0 and G2 chromosomal assays in the evaluation of radiosensitivity in a cohort of Italian breast cancer patients. J Radiat Res, 51(5): 615-9. [DOI:10.1269/jrr.10052]
41. Smith TA, Kirkpatrick DR, Smith S, Smith TK, Pearson T, Kailasam A, et al. (2017) Radioprotective agents to prevent cellular damage due to ionizing radiation. J Translat Med, 15(1): 1-18. [DOI:10.1186/s12967-017-1338-x]
42. Mohan G, TP AH, Jijo A, KM SD, Narayanasamy A, Vellingiri B (2019) Recent advances in radiotherapy and its associated side effects in cancer-a review. The Journal of Basic and Applied Zoology, 80(1): 1-10. [DOI:10.1186/s41936-019-0083-5]
43. Hosseinzadeh H, Younesi HM (2002) Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol, 2: 7. [DOI:10.1186/1471-2210-2-7]
44. Premkumar K, Thirunavukkarasu C, Abraham S, Santhiya S, Ramesh A (2006) Protective effect of saffron (Crocus sativus L.) aqueous extract against genetic damage induced by anti-tumor agents in mice. Human Exp Toxicol, 25(2): 79-84. [DOI:10.1191/0960327106ht589oa]
45. Mozdarani H, Pakniyat F, Mozdarani S, Nosrati H (2021) Effects of saffron extract on the frequency of radiation induced chromosomal aberration in G2-lymphocytes of normal individuals and breast cancer patients. Int J Radiat Res, 19(3): 711-17. [DOI:10.52547/ijrr.19.3.711]
46. Samei E, Mozdarani H, Samiei F, Javadi G (2020) Radiosensitizing effects of melatonin on radiation induced chromosomal aberration in G2-lymphocytes of breast cancer patients. Int J Radiat Res,18(4): 657-62. [DOI:10.52547/ijrr.18.4.657]
47. Reiter RJ, Tan DX, Galano A (2014) Melatonin reduces lipid peroxidation and membrane viscosity. Front Physiol, 5: 377 [DOI:10.3389/fphys.2014.00377]
48. Yuan L, Collins AR, Dai J, Dubocovich ML, Hill SM (2002) MT(1) melatonin receptor overexpression enhances the growth suppressive effect of melatonin in human breast cancer cells. Mol Cell Endocrinol, 192(1-2): 147-156. [DOI:10.1016/S0303-7207(02)00029-1]
49. Shirazi A, Haddadi G, Minaee B, Sepehrizadeh Z, Mahdavi S, Jaberi E, et al. (2010) Evaluation of melatonin for modulation of apoptosis-related genes in irradiated cervical spinal cord. Int J Low Radiat, 7(6): 436-45. [DOI:10.1504/IJLR.2010.037665]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mozdarani H, Mozdarani S, Pakniyat F, Mozdarani S, Nosrati H. Cytogenetic and cytotoxic effects of melatonin and saffron on lymphocytes of luminal A and luminal B breast cancer patients irradiated in vitro. Int J Radiat Res 2025; 23 (1) :37-43
URL: http://ijrr.com/article-1-5919-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 23, Issue 1 (1-2025) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.14 seconds with 48 queries by YEKTAWEB 4704