Department of Ultrasound, Tongren Hospital of Wuhan University, Wuhan Third Hospital, Wuhan, China , sypyx14@163.com
Abstract: (210 Views)
Background:High-intensity focused ultrasound (HIFU) represents a therapeutic medical procedure that operates by inducing ablation and mechanical disruption. Despite its established efficacy, its potential impact on tumor chemotherapy remains uncertain. Long noncoding RNA (lncRNA) MAFA-AS1 facilitated cancer cell proliferation and fostering drug resistance, but the precise significance and functional implications of MAFA-AS1 in the context of ovarian cancer (OC) remain largely unexplored. The objective of this experiment is to further investigate the potential of HIFU in inhibiting the chemotherapy resistance mechanism of OC. Materials and Methods: Five types of human ovarian cancer cells were employed in this study. There were four different groups, namely MAFA-AS1 siRNA, si-NC, pcDNA3.1-HIF-1 (hypoxia-inducible factor-1), and pcDNA3.1-control. Quantitative real-time PCR, cell proliferation assay, apoptosis assay, western blot assay, subcellular fractionation, aerobic glycolysis analysis, RNA immunoprecipitation (RIP), and luciferase reporter assay were conducted for experimentation and validation. Results: Significant upregulation of MAFA-AS1 in OC cells was observed. Through loss-of-function experiments based on HIFU, we unraveled its oncogenic functions in OC. MAFA-AS1 was discovered to bind to HIF-1 mRNA, thereby enhancing its expressed stability. Further investigations revealed an interaction between MAFA-AS1 and fat mass and obesity-associated protein (FTO), positively modulating HIF-1 mRNA stability in an FTO-dependent manner. Importantly, MAFA-AS1 exerts its effects on OC by acting through HIF-1. Conclusion: The study underscores the role of MAFA-AS1 in promoting aerobic glycolysis and chemical resistance in OC by up-regulating HIF-1 expression, suggesting that targeting MAFA-AS1 holds promise as a therapeutic strategy for OC patients undergoing chemotherapy.
1. 1. Simioni C, Bergamini F, Ferioli M, et al. (2020) New biomarkers and therapeutic strategies in acute lymphoblastic leukemias: Recent advances. Hematological oncology, 38(1): 22-33. [DOI:10.1002/hon.2678]
2. Shoji S, Kuroda S, Uemura K, et al. (2022) Risk factors for severe erectile dysfunction after focal therapy with high-intensity focused ultrasound for prostate cancer. Biomedicines, 10(11): 2876. [DOI:10.3390/biomedicines10112876]
3. Lei T, Guo X, Gong C, et al. (2021) High-intensity focused ultrasound ablation in the treatment of recurrent ovary cancer and metastatic pelvic tumors: a feasibility study. Int J Hyperthermia, 38(1): 282-287. [DOI:10.1080/02656736.2021.1889698]
4. Chen Y, Shen Z, Zhi Y, et al. (2018) Long non-coding RNA ROR promotes radioresistance in hepatocelluar carcinoma cells by acting as a ceRNA for microRNA-145 to regulate RAD18 expression. Archives of Biochemistry and Biophysics, 645: 117-125. [DOI:10.1016/j.abb.2018.03.018]
5. Luo H, Zhu G, Xu J, et al. (2019) HOTTIP lncRNA promotes hematopoietic stem cell self-renewal leading to AML-like disease in mice. Cancer cell, 36(6): 645-659.e8. [DOI:10.1016/j.ccell.2019.10.011]
6. Li Q, Song W, Wang J (2019) TUG1 confers Adriamycin resistance in acute myeloid leukemia by epigenetically suppressing miR-34a expression via EZH2. Biomedecine & pharmacotherapie, 109: 1793-1801. [DOI:10.1016/j.biopha.2018.11.003]
7. Papaioannou D, Petri A, Dovey OM, et al. (2019) The long non-coding RNA HOXB-AS3 regulates ribosomal RNA transcription in NPM1-mutated acute myeloid leukemia. Nature communications, 10(1): 5351. [DOI:10.1038/s41467-019-13259-2]
8. Jing Z, Gao L, Wang H, Chen J, et al. (2019) Long non-coding RNA GAS5 regulates human B lymphocytic leukaemia tumourigenesis and metastasis by sponging miR-222. Cancer Biomarkers, 26(3): 385-392. [DOI:10.3233/cbm-190246]
9. Zhan Y, Guan XY, Li Y (2020) MAFA-AS1, a long non-coding RNA, predicts for poor survival of hepatocellular carcinoma. Transl Cancer Res, 9(4): 2449-2459. [DOI:10.21037/tcr.2020.03.11]
10. Zheng G, Zhang Y, Wang H, et al. (2020) Genome-wide DNA methylation analysis by MethylRad and the transcriptome profiles reveal the potential cancer-related lncRNAs in colon cancer. Cancer Med, 9(20): 7601-7612. [DOI:10.1002/cam4.3412]
11. Shen X, Shen P, Yang Q, et al. (2019) Knockdown of long non-coding RNA PCAT-1 inhibits myeloma cell growth and drug resistance via p38 and JNK MAPK pathways. Journal of Cancer, 10(26): 6502-6510. [DOI:10.7150/jca.35098]
12. Koukourakis MI and Giatromanolaki A (2018) Warburg effect, lactate dehydrogenase, and radio/chemo-therapy efficacy. Int J Radiat Biol, 95(4): 408-26. [DOI:10.1080/09553002.2018.1490041]
13. Liberti MV and Locasale JW (2016) The Warburg effect: How does it benefit cancer cells? Trends in Biochemical Sciences, 41(3): 211-218. [DOI:10.1016/j.tibs.2015.12.001]
14. Baumeister J, Chatain N, Hubrich A, et al. (2019) Hypoxia-inducible factor 1 (HIF-1) is a new therapeutic target in JAK2V617F-positive myeloproliferative neoplasms. Leukemia, 34(4): 1062-1074. [DOI:10.1038/s41375-019-0629-z]
15. Mao Y, Dong L, Liu XM, et al. (2019) m(6)A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nature Communications, 10(1): 5332. [DOI:10.1038/s41467-019-13317-9]
16. Ma S, Chen C, Ji X, et al. (2019) The interplay between m6A RNA methylation and noncoding RNA in cancer. Journal of Hematology & Oncology, 12(1): 121. [DOI:10.1186/s13045-019-0805-7]
17. Li Q, Ni Y, Zhang L, Jiang R, et al. (2021) HIF-1alpha-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation. Signal Transduct Target Ther, 6(1): 76. [DOI:10.1038/s41392-020-00453-8]
18. Xiao Y, Thakkar KN, Zhao H, et al. (2020) The m(6)A RNA demethylase FTO is a HIF-independent synthetic lethal partner with the VHL tumor suppressor. Proc Natl Acad Sci U S A, 117(35): 21441-2149. [DOI:10.1073/pnas.2000516117]
19. Su Y, Huang J, Hu J (2019) m(6)A RNA methylation regulators contribute to malignant progression and have clinical prognostic impact in gastric cancer. Frontiers in Oncology, 9: 1038. [DOI:10.3389/fonc.2019.01038]
20. Paris J, Morgan M, Campos J, et al. (2019) Targeting the RNA m(6)A Reader YTHDF2 Selectively Compromises Cancer Stem Cells in Acute Myeloid Leukemia. Cell Stem Cell, 25(1): 137-148.e6. [DOI:10.1016/j.stem.2019.03.021]
21. Weng H, Huang H, Wu H, et al. (2018) METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA m(6)A Modification. Cell Stem Cell, 22(2): 191-205.e9. [DOI:10.1016/j.stem.2017.11.016]
22. Wu R, Hu B, Jiang LX, et al. (2008) High-intensity focused ultrasound in ovarian cancer xenografts. Advances in Therapy, 25(8): 810-819. [DOI:10.1007/s12325-008-0084-0]
23. Lyu Y, Zhang Y, Wang Y, et al. (2022) HIF-1alpha regulated WTAP overexpression promoting the Warburg effect of ovarian cancer by m6a-dependent manner. J Immunol Res, 2022: 6130806. [DOI:10.1155/2022/6130806]
24. Ma X, Zhou J, Liu J, et al. (2018) LncRNA ANCR promotes proliferation and radiation resistance of nasopharyngeal carcinoma by inhibiting PTEN expression. OncoTargets and therapy, 11: 8399-8408. [DOI:10.2147/OTT.S182573]
25. Chen T, Huang B, Pan Y (2021) Long non-coding RNA MAFG-AS1 promotes cell proliferation, migration, and EMT by miR-3196/STRN4 in drug-resistant cells of liver cancer. Frontiers in Cell and Developmental Biology, 9: 688603. [DOI:10.3389/fcell.2021.688603]
26. Zeng H, Wu H, Yan M, et al. (2019) Characterization of a 4 lncRNAs-based prognostic risk scoring system in adults with acute myeloid leukemia. Leukemia Research, 88: 106261. [DOI:10.1016/j.leukres.2019.106261]
27. Xu XD, Shao SX, Jiang HP, et al. (2015) Warburg effect or reverse Warburg effect? A review of cancer metabolism. Oncology Research and Treatment, 38(3): 117-22. [DOI:10.1159/000375435]
28. Hirschhaeuser F, Sattler UG, Mueller-Klieser W (2011) Lactate: a metabolic key player in cancer. Cancer Research, 71(22): 6921-5. [DOI:10.1158/0008-5472.CAN-11-1457]
29. Mims J, Bansal N, Bharadwaj MS, et al. (2015) Energy metabolism in a matched model of radiation resistance for head and neck squamous cell cancer. Radiation Research, 183(3): 291-304. [DOI:10.1667/RR13828.1]
30. Xu S, Yu C, Ma X, et al. (2021) IL-6 promotes nuclear translocation of HIF-1α to aggravate chemoresistance of ovarian cancer cells. European Journal of Pharmacology, 894: 173817. [DOI:10.1016/j.ejphar.2020.173817]
31. Long F, Liu W, Jia P, et al. (2018) HIF-1α-induced autophagy contributes to cisplatin resistance in ovarian cancer cells. Die Pharmazie, 73(9): 533-536.
32. Shigeta K, Hasegawa M, Hishiki T, et al. (2023) IDH2 stabilizes HIF-1α-induced metabolic reprogramming and promotes chemoresistance in urothelial cancer. The EMBO Journal, 42(4): e110620. [DOI:10.15252/embj.2022110620]
33. Dong S, Liang S, Cheng Z, et al. (2022) ROS/PI3K/Akt and Wnt/β-catenin signalings activate HIF-1α-induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer. J Exp Clin Can Res, 41(1): 15. [DOI:10.1186/s13046-021-02229-6]
34. Deng X, Su R, Stanford S, Chen J (2018) Critical enzymatic functions of FTO in obesity and cancer. Frontiers in Endocrinology, 9: 396. [DOI:10.3389/fendo.2018.00396]
35. Doaei S, Kalantari N, Mohammadi NK, et al. (2019) Up-regulation of FTO gene expression was associated with increase in skeletal muscle mass in overweight male adolescents. Archives of Medical Science: AMS, 15(5): 1133-7. [DOI:10.5114/aoms.2019.87239]
36. Yang S, Wei J, Cui YH, et al. (2019) m(6)A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nature Communications, 10(1): 2782. [DOI:10.1038/s41467-019-10669-0]
37. Wu J, Wang X, Li X (2022) N6-methyladenosine methylation regulator FTO promotes oxidative stress and induces cell apoptosis in ovarian cancer. Epigenomics, 14(23): 1509-1522. [DOI:10.2217/epi-2022-0403]
38. Huang H, Wang Y, Kandpal M, et al. (2020) FTO-dependent N (6)-methyladenosine modifications inhibit ovarian cancer stem cell self-renewal by blocking cAMP signaling. Cancer Research, 80(16): 3200-14. [DOI:10.1158/0008-5472.CAN-19-4044]
Huang M, Peng Y, Sun Y, Gao W, Fei J, Zhou C, et al . High-intensity focused ultrasound inhibits lncRNA MAFA-AS1-modulated stability of HIF-1 mRNA in an m6A-dependent manner to suppress aerobic glycolysis and adriamycin resistance in ovarian cancer. Int J Radiat Res 2025; 23 (1) :201-210 URL: http://ijrr.com/article-1-6055-en.html