|
|
Chen S, Huang R, Chen J, Lin H, Lu L, Jiang Z. Application value of amide proton transfer combined with relative cerebral blood volume in grading adult diffuse glioma and predicting isocitrate dehydrogenase gene mutation status. Int J Radiat Res 2025; 23 (3) :737-742 URL: http://ijrr.com/article-1-6666-en.html
Department of Radiology, Quanzhou First Hospital, Quanzhou, Fujian, China , hrisheng@126.com
Abstract: (203 Views)
Background: This research attempted to elucidate amide proton transfer (APT) role in combination with relative cerebral blood volume (rCBV) in grading adult diffuse glioma and predicting isocitrate dehydrogenase (IDH) gene mutation status. Materials and Methods: A retrospective analysis was implemented on 70 patients with adult diffuse glioma in our hospital from September 2022 to October 2023. All patients underwent Dynamic Susceptibility Contrast Perfusion Weighted Imaging (DSC-PWI) and APT-weighted magnetic resonance imaging examination. The values of rCBVmax and APTmean in differentiating the classification of glioma and IDH gene mutation status were analyzed. Results: The rCBVmax and APTmean value were reduced in grade II patients than in grade III patients (P<0.01). The AUC of rCBVmax value combined with APTmean value was 0.9330, with a 95% CI of 0.8962-0.9697, which was higher than single rCBVmax value or APTmean value (P<0.001). The rCBVmax value and APTmean were higher in IDH wild-type glioma patients than in IDH mutant-type glioma patients (P<0.01). The AUC of rCBVmax value combined with APTmean value was 0.8808, with a 95% CI of 0.8233-0.9383, which was higher than single rCBVmax value or APTmean value (P<0.001). Conclusion: The combined diagnosis of APT and rCBV can improve the value of differentiating grade I and II glioma as well as IDH genotyping, which is worth of promoting in clinical practice.
References
1. 1. Miller AM, Shah RH, Pentsova EI, Pourmaleki M, Briggs S, Distefano N, et al. (2019) Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature, 565(7741): 654-8. [ DOI:10.1038/s41586-019-0882-3] 2. Azad TD and Bettegowda C (2022) Longitudinal monitoring of diffuse midline glioma using liquid biopsy. Neuro-oncology, 24(8): 1375-6. [ DOI:10.1093/neuonc/noac076] 3. Gusyatiner O and Hegi ME (2018) Glioma epigenetics: From subclassification to novel treatment options. Seminars in Cancer Biology, 51: 50-8. [ DOI:10.1016/j.semcancer.2017.11.010] 4. Horbinski C, Berger T, Packer RJ, Wen PY (2022) Clinical implications of the 2021 edition of the WHO classification of central nervous system tumours. Nature Reviews Neurology, 18(9): 515-29. [ DOI:10.1038/s41582-022-00679-w] 5. Mellinghoff IK, Ellingson BM, Touat M, Maher E, De La Fuente MI, Holdhoff M, et al. (2020) Ivosidenib in isocitrate dehydrogenase 1-mutated advanced glioma. Journal of Clinical Oncology, 38(29): 3398-406. [ DOI:10.1200/JCO.19.03327] 6. Yan X, Ji H, Liu Z, Ma S, Dong J, Jiang X, et al. (2022) Characterization of the ferroptosis-related genes for prognosis and immune infiltration in low-grade glioma. Frontiers in Genetics, 13: 880864. [ DOI:10.3389/fgene.2022.880864] 7. Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, et al. (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. The New England Journal of Medicine, 372(26): 2499-508. [ DOI:10.1056/NEJMoa1407279] 8. Dang L, Jin S, Su SM (2010) IDH mutations in glioma and acute myeloid leukemia. Trends in Molecular Medicine, 16(9): 387-97. [ DOI:10.1016/j.molmed.2010.07.002] 9. Li G, Li L, Li Y, Qian Z, Wu F, He Y, et al. (2022) An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas. Brain, 145(3): 1151-61. [ DOI:10.1093/brain/awab340] 10. Song S, Wang L, Yang H, Shan Y, Cheng Y, Xu L, et al. (2021) Static (18)F-FET PET and DSC-PWI based on hybrid PET/MR for the prediction of gliomas defined by IDH and 1p/19q status. European Radiology, 31(6): 4087-96. [ DOI:10.1007/s00330-020-07470-9] 11. Kickingereder P, Wiestler B, Burth S, Wick A, Nowosielski M, Heiland S, et al. (2015) Relative cerebral blood volume is a potential predictive imaging biomarker of bevacizumab efficacy in recurrent glioblastoma. Neuro-Oncology, 17(8): 1139-47. [ DOI:10.1093/neuonc/nov028] 12. Schmainda KM, Prah M, Connelly J, Rand SD, Hoffman RG, Mueller W, et al. (2014) Dynamic-susceptibility contrast agent MRI measures of relative cerebral blood volume predict response to bevacizumab in recurrent high-grade glioma. Neuro-Oncology, 16(6): 880-8. [ DOI:10.1093/neuonc/not216] 13. Milot L (2022) Amide proton transfer-weighted MRI: Insight into cancer cell biology. Radiology, 305(1): 135-6. [ DOI:10.1148/radiol.221376] 14. Lee DW, Heo H, Woo DC, Kim JK, Lee DH (2021) Amide proton transfer-weighted 7-T MRI contrast of myelination after cuprizone administration. Radiology, 299(2): 428-34. [ DOI:10.1148/radiol.2021203766] 15. Jiang S, Eberhart CG, Zhang Y, Heo HY, Wen Z, Blair L, et al. (2017) Amide proton transfer-weighted magnetic resonance image-guided stereotactic biopsy in patients with newly diagnosed gliomas. European Journal of Cancer, 83: 9-18. [ DOI:10.1016/j.ejca.2017.06.009] 16. Wu M, Jiang T, Guo M, Duan Y, Zhuo Z, Weng J, et al. (2023) Amide proton transfer-weighted imaging and derived radiomics in the classification of adult-type diffuse gliomas. European Radiology, 34(5): 2986-2996. [ DOI:10.1007/s00330-023-10343-6] 17. Tang PLY, Méndez Romero A, Jaspers JPM, Warnert EAH (2022) The potential of advanced MR techniques for precision radiotherapy of glioblastoma. Magma (New York, NY), 35(1): 127-43. [ DOI:10.1007/s10334-021-00997-y] 18. Mandonnet E (2011) Mathematical modeling of glioma on MRI. Revue Neurologique, 167(10): 715-20. [ DOI:10.1016/j.neurol.2011.07.009] 19. Bahrami N, Hartman SJ, Chang YH, Delfanti R, White NS, Karunamuni R, et al. (2018) Molecular classification of patients with grade II/III glioma using quantitative MRI characteristics. Journal of Neuro-oncology, 139(3): 633-42. [ DOI:10.1007/s11060-018-2908-3] 20. Colquhoun A (2017) Cell biology-metabolic crosstalk in glioma. Int J Biochem Cell Biol, 89: 171-81. [ DOI:10.1016/j.biocel.2017.05.022] 21. Liang W, Guo B, Ye J, Liu H, Deng W, Lin C, et al. (2019) Vasorin stimulates malignant progression and angiogenesis in glioma. Cancer Science, 110(8): 2558-72. [ DOI:10.1111/cas.14103] 22. Fuss M, Wenz F, Scholdei R, Essig M, Debus J, Knopp MV, et al. (2000) Radiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurrence. Int J Radiat Oncol Biol Phys, 48(1): 53-8. [ DOI:10.1016/S0360-3016(00)00590-3] 23. Chen K, Jiang XW, Deng LJ, She HL (2022) Differentiation between glioma recurrence and treatment effects using amide proton transfer imaging: A mini-Bayesian bivariate meta-analysis. Frontiers in Oncology, 12: 852076. [ DOI:10.3389/fonc.2022.852076] 24. Han S, Liu Y, Cai SJ, Qian M, Ding J, Larion M, et al. (2020) IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br J Can, 122(11): 1580-9. [ DOI:10.1038/s41416-020-0814-x] 25. Turkalp Z, Karamchandani J, Das S (2014) IDH mutation in glioma: new insights and promises for the future. JAMA Neurology, 71(10): 1319-25. [ DOI:10.1001/jamaneurol.2014.1205] 26. Vuong HG, Altibi AMA, Duong UNP, Ngo HTT, Pham TQ, Chan AK, et al. (2017) TERT promoter mutation and its interaction with IDH mutations in glioma: Combined TERT promoter and IDH mutations stratifies lower-grade glioma into distinct survival subgroups-A meta-analysis of aggregate data. Crit Rev Oncol Hematol, 120: 1-9. [ DOI:10.1016/j.critrevonc.2017.09.013] 27. Molenaar RJ and Wilmink JW (2022) IDH1/2 Mutations in Cancer stem cells and their implications for differentiation therapy. J Histochem Cytochem, 70(1): 83-97. [ DOI:10.1369/00221554211062499] 28. Berger TR, Wen PY, Lang-Orsini M, Chukwueke UN (2022) World Health Organization 2021 Classification of central nervous system tumors and implications for therapy for adult-type gliomas: A review. JAMA Oncology, 8(10): 1493-501. [ DOI:10.1001/jamaoncol.2022.2844] 29. Miller JJ (2022) Targeting IDH-mutant glioma. Neurotherapeutics, 19(6): 1724-32. [ DOI:10.1007/s13311-022-01238-3] 30. Dang L, Yen K, Attar EC (2016) IDH mutations in cancer and progress toward development of targeted therapeutics. Annals of Oncology, 27(4): 599-608. [ DOI:10.1093/annonc/mdw013] 31. Doll S, Urisman A, Oses-Prieto JA, Arnott D, Burlingame AL (2017) Quantitative proteomics reveals fundamental regulatory differences in oncogenic HRAS and isocitrate dehydrogenase (IDH1) driven astrocytoma. Molecular & cellular Proteomics, 16(1): 39-56. [ DOI:10.1074/mcp.M116.063883] 32. Roux A, Roca P, Edjlali M, Sato K, Zanello M, Dezamis E, et al. (2019) MRI atlas of IDH wild-type supratentorial glioblastoma: probabilistic maps of phenotype, management, and outcomes. Radiology, 293(3): 633-43. [ DOI:10.1148/radiol.2019190491] 33. Álvarez-Torres MDM, Balaña C, Fuster-García E, Puig J, García-Gómez JM (2023) Unlocking bevacizumab's potential: rCBV(max) as a Predictive biomarker for enhanced survival in glioblastoma IDH-wildtype patients. Cancers, 16(1): 161. [ DOI:10.3390/cancers16010161] 34. Joo B, Han K, Ahn SS, Choi YS, Chang JH, Kang SG, et al. (2019) Amide proton transfer imaging might predict survival and IDH mutation status in high-grade glioma. European Radiology, 29(12): 6643-52. [ DOI:10.1007/s00330-019-06203-x]
|