|
|
Chen G, Jiang S, Kong L, Yang T, Sun X, Xu T, et al . Radiotherapy for Digestive Tract Tumors: An overview of the Different Approaches, Side Effects, and Recent Advances. Int J Radiat Res 2025; 23 (3) :757-769 URL: http://ijrr.com/article-1-6678-en.html
Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China , xieqingrjh@163.com
Abstract: (200 Views)
Background: Digestive tract cancers, including esophageal, gastric, colorectal, liver, pancreatic, gastrointestinal stromal tumors (GISTs), and digestive blastomas, accounted for 26% of cancer cases and 38% of cancer-related deaths worldwide in 2020. Managing these malignancies is challenging due to frequent advanced-stage diagnosis, complicating treatment and resulting in poor prognoses. Radiotherapy has evolved from a palliative approach to a curative treatment for several digestive tract cancers, with advances in techniques like three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and stereotactic body radiotherapy (SBRT) improving precision and efficacy. Materials and Methods: PubMed was searched from inception to September 2024 using various keywords with Boolean modifiers and operators. The abstracts were screened, and any relevant articles were imported into a reference manager. Additionally, the references of the selected articles were further screened for any further relevant articles. Results: This literature review examines the integration of radiotherapy into multimodal treatments, such as neoadjuvant chemoradiation for esophageal and gastric cancers, as demonstrated by the CROSS study. Challenges include resistance to therapy, often mediated by molecular mechanisms involving non-coding RNAs, and significant side effects like gastrointestinal toxicity and fatigue. The emerging role of the gut microbiome in influencing radiotherapy efficacy and side effects is also highlighted. Conclusion: Despite successes, overcoming resistance and reducing side effects remain significant challenges. Advances in radiotherapy techniques, combined with a deeper understanding of molecular biology and the gut microbiome offer promising avenues for enhancing efficacy and tolerability.
References
1. Bellefkih FZ, Benchakroun N, Lalya I, et al. (2023) Radiotherapy in the management of rare gastrointestinal cancers: A systematic re view. Cancer Radiother, 27: 622-637. [ DOI:10.1016/j.canrad.2023.06.010] 2. Zhang H, Jiang T, Mu M, et al. (2022) Radiotherapy in the manage ment of gastrointestinal stromal tumors: A systematic review. Cancers (Basel), 14: 3169. [ DOI:10.3390/cancers14133169] 3. Lolli C, Pantaleo MA, Nannini M, et al. (2011) Successful radio therapy for local control of progressively increasing metastasis of gastrointestinal stromal tumor. Rare Tumors, 3: e49.4. [ DOI:10.4081/rt.2011.e49] 4. Miettinen M and Lasota J (2001) Gastrointestinal stromal tumors-definition, clinical, histological, immunohistochemical, and molec ular genetic features and differential diagnosis. Virchows Arch, 438: 1-12. [ DOI:10.1007/s004280000338] 5. Vaamonde-Martín RJ, Ballesta-Ruiz M, Sánchez-Gil A, et al. (2023) Incidence trends and main features of gastro-intestinal stromal tumours in a mediterranean region: A population-based study. Cancers (Basel), 15: 2994. [ DOI:10.3390/cancers15112994] 6. Cameron MG, Kersten C, Vistad I, et al., (2016), Palliative pelvic radiotherapy for symptomatic rectal cancer-a prospective multi center study. Acta Oncol (Madr), 55: 1400-1407. [ DOI:10.1080/0284186X.2016.1191666] 7. Burkoň P, Slávik M, Kazda T, et al. (2019) Stereotactic body radio therapy - current indications. Klin Onkol, 32: 10-24. [ DOI:10.14735/amko201910] 8. Serrano C, Martín-Broto J, Asencio-Pascual JM, et al. (2023) 2023 GEIS Guidelines for gastrointestinal stromal tumors. Ther Adv Med Oncol, 15: 17588359231192388. [ DOI:10.1177/17588359231192388] 9. Cao L, Tian W, Zhao Y, et al. (2024) Gene mutations in gastrointes tinal stromal tumors: advances in treatment and mechanism re search. Glob Med Genet, 11: 251-262. [ DOI:10.1055/s-0044-1789204] 10. Loi M, Duijm M, Baker S, et al. (2018) Stereotactic body radiother apy for oligometastatic soft tissue sarcoma. Radiol Med, 123: 871-878. [ DOI:10.1007/s11547-018-0912-5] 11. Liu Y, El Jabbour T, Somma J, et al. (2024) Blastomas of the diges tive system in adults: A review. World J Gastrointest Surg, 16: 1030-1042. [ DOI:10.4240/wjgs.v16.i4.1030] 12. Li J, Wang G, Jiang Z. (2024) Gastroblastoma: a case report and lit erature review. Front Oncol, 14: 1354021. [ DOI:10.3389/fonc.2024.1354021] 13. Wey EA, Britton AJ, Sferra JJ, et al. (2012) Gastroblastoma in a 28-year-old man with nodal metastasis: proof of the malignant po tential. Arch Pathol Lab Med, 136: 961-964. [ DOI:10.5858/arpa.2011-0372-CR] 14. Toumi O, Ammar H, Korbi I, et al. (2017) Gastroblastoma, a bipha sic neoplasm of stomach: A case report. Int J Surg Case Rep, 39: 72-76. [ DOI:10.1016/j.ijscr.2017.06.061] 15. Ozkan E (2018) Radiotherapy for Gastrointestinal Stromal Tumors. Chin Med J (Engl), 131: 235. [ DOI:10.4103/0366-6999.222344] 16. Liu Y, El Jabbour T, Somma J, et al. (2024) Blastomas of the diges tive system in adults: A review. World J Gastrointest Surg, 16: 1030-1042. [ DOI:10.4240/wjgs.v16.i4.1030] 17. Bai, Xing-hua, Dang, et al. (2020) Comparison between intensity-modulated radiotherapy and three-dimensional conformal radio therapy for their effectiveness in esophageal cancer treatment: A retrospective single institution study. Journal of Oncology, 2020: 6582341. [ DOI:10.1155/2020/6582341] 18. Tonison J.J., Fischer, S.G., Viehrig, M. et al. (2019) Radiation pneu monitis after intensity-modulated radiotherapy for esophageal cancer: Institutional data and a systematic review. Sci Rep, 9: 2255. [ DOI:10.1038/s41598-018-38414-5] 19. Xu K, Guo H, Xia A, et al., (2023) Non-coding RNAs in radiotherapy resistance: Roles and therapeutic implications in gastrointestinal cancer. Biomed Pharmacother, 161: 114485. [ DOI:10.1016/j.biopha.2023.114485] 20. Xu D, Li G, Li H, et al. (2017) Comparison of IMRT versus 3D-CRT in the treatment of esophagus cancer: A systematic review and me ta-analysis. Medicine, 96: e7685. [ DOI:10.1097/MD.0000000000007685] 21. Tang W, Li X, Yu H, et al. (2021) A novel nomogram containing acute radiation esophagitis predicting radiation pneumonitis in thoracic cancer receiving radiotherapy. BMC Cancer, 21: 585. [ DOI:10.1186/s12885-021-08264-y] 22. Valdagni R, Rancati T, Fiorino C, et al. (2008) Development of a set of nomograms to predict acute lower gastrointestinal toxicity for prostate cancer 3D-CRT. Int J Radiat Oncol Biol Phys, 71: 1065-1073. [ DOI:10.1016/j.ijrobp.2007.11.037] 23. Troeller A, Yan D, Marina O, et al. (2015) Comparison and limita tions of DVH-based NTCP models derived from 3D-CRT and IMRT data for prediction of gastrointestinal toxicities in prostate cancer patients by using propensity score matched pair analysis. Int J Ra diat Oncol Biol Phys, 91: 435-443. [ DOI:10.1016/j.ijrobp.2014.09.046] 24. Goyal K, Einstein D, Ibarra RA, et al. (2012) Stereotactic body radi ation therapy for nonresectable tumors of the pancreas. J Surg Res, 174: 319-325. [ DOI:10.1016/j.jss.2011.07.044] 25. Seo YS, Kim MS, Yoo HJ, et al. (2014) Stereotactic body radiother apy for oligo-recurrence within the nodal area from colorectal cancer. World J Gastroenterol, 20: 2005-2013. [ DOI:10.3748/wjg.v20.i8.2005] 26. Takeda A, Sanuki N, Kunieda E. (2014) Role of stereotactic body ra diotherapy for oligometastasis from colorectal cancer. World J Gastroenterol, 20: 4220-4229. [ DOI:10.3748/wjg.v20.i15.4220] 27. Sanuki N, Takeda A, Tsurugai Y, et al. (2022) Role of stereotactic body radiotherapy in multidisciplinary management of liver me tastases in patients with colorectal cancer. Jpn J Radiol, 40: 1009-1016. [ DOI:10.1007/s11604-022-01307-9] 28. van Dorp M, Trimbos C, Schreurs WH, et al. (2023) Colorectal Pul monary Metastases: Pulmonary Metastasectomy or Stereotactic Radiotherapy? Cancers, 15: 5186. [ DOI:10.3390/cancers15215186] 29. Kobiela J, Spychalski P, Marvaso G, et al. (2018) Ablative stereo tactic radiotherapy for oligometastatic colorectal cancer: System atic review. Crit Rev Oncol Hematol, 129: 91-101. [ DOI:10.1016/j.critrevonc.2018.06.005] 30. Wang K, Chen Y, Zhang Z, et al. (2023) RIFLE: a Phase II trial of ste reotactic ablative radiotherapy combined with fruquintinib and tislelizumab in metastatic colorectal cancer. Gastroenterol Rep, 11: goad063. [ DOI:10.1093/gastro/goad063] 31. Barker C, Lowe M, Radhakrishna G. (2019) An introduction to pro ton beam therapy. Br J Hosp Med, 80: 574-578. [ DOI:10.12968/hmed.2019.80.10.574] 32. Chuong MD, Hallemeier CL, Jabbour SK, et al. (2016) Improving outcomes for esophageal cancer using proton beam therapy. Int J Radiat Oncol Biol Phys, 95: 488-497. [ DOI:10.1016/j.ijrobp.2015.11.043] 33. Kim TH, Koh YH, Kim BH, et al. (2021) Proton beam radiotherapy vs. radiofrequency ablation for recurrent hepatocellular carcino ma: A randomized phase III trial. J Hepatol, 74: 603-612. [ DOI:10.1016/j.jhep.2020.09.026] 34. Oshiro Y, Okumura T, Mizumoto M, et al. (2013) Proton beam therapy for unresectable hepatoblastoma in children: survival in one case. Acta Oncol, 52: 600-603. [ DOI:10.3109/0284186X.2012.760849] 35. Bertholet J, Vinogradskiy Y, Hu Y, et al. (2021) Advances in image-guided adaptive radiation therapy. Int J Radiat Oncol Biol Phys, 110: 625-628. [ DOI:10.1016/j.ijrobp.2021.02.047] 36. Kraynak J and Marciscano AE. (2023) Image-guided radiation ther apy of tumors in preclinical models. Methods Cell Biol, 180: 1-13. [ DOI:10.1016/bs.mcb.2023.02.008] 37. Boldrini L, Intven M, Bassetti M, et al. (2021) MR-guided radio therapy for rectal cancer: current perspective on organ preserva tion. Front Oncol, 11: 619852. [ DOI:10.3389/fonc.2021.619852] 38. Roeder F, Fastner G, Fussl C, et al. (2023) First clinical application of image-guided intraoperative electron radiation therapy with real time intraoperative dose calculation in recurrent rectal can cer: technical procedure. Radiat Oncol, 18: 186. [ DOI:10.1186/s13014-023-02374-6] 39. van den Ende RPJ, Kerkhof EM, Rigter LS, et al., (2019) Feasibility of gold fiducial markers as a surrogate for gross tumor volume po sition in image-guided radiation therapy of rectal cancer. Int J Ra diat Oncol Biol Phys, 105: 1151-1159. [ DOI:10.1016/j.ijrobp.2019.08.052] 40. Gwynne S, Webster R, Adams R, et al. (2012) Image-guided radio therapy for rectal cancer: a systematic review. Clin Oncol, 24: 250-260. [ DOI:10.1016/j.clon.2011.07.012] 41. Grazzini G, Danti G, Chiti G, et al. (2023) Local recurrences in rec tal cancer: MRI vs. CT. Diagnostics, 13: 2104. [ DOI:10.3390/diagnostics13122104] 42. Tahmasebi N, Boulanger P, Yun J, et al. (2020) Real-time lung tu mor tracking using a CUDA enabled nonrigid registration algo rithm for MRI. IEEE J Transl Eng Health Med, 8: 4300308. [ DOI:10.1109/JTEHM.2020.2989124] 43. Bogveradze N, Snaebjornsson P, Grotenhuis BA, et al. (2023) MRI anatomy of the rectum: key concepts important for rectal cancer staging and treatment planning. Insights Imaging, 14: 13. [ DOI:10.1186/s13244-022-01348-8] 44. Fernandes MC, Gollub MJ, Brown G (2022) The importance of MRI for rectal cancer evaluation. Surg Oncol, 43: 101739. [ DOI:10.1016/j.suronc.2022.101739] 45. Bates DDB, El Homsi M, Chang KJ, et al. (2022) MRI for rectal can cer: staging, mrCRM, EMVI, lymph node staging and post-treatment response. Clin Colorectal Cancer, 21: 10-18. [ DOI:10.1016/j.clcc.2021.10.007] 46. Lu L, Li F, Gao Y, et al. (2024) Microbiome in radiotherapy: an emerging approach to enhance treatment efficacy and reduce tis sue injury. Molecular Medicine, 2024: 105. [ DOI:10.1186/s10020-024-00873-0] 47. Barko PC, McMichael MA, Swanson KS, et al. (2018) The gastroin testinal microbiome: A review. J Vet Intern Med, 32: 9-25. [ DOI:10.1111/jvim.14875] 48. Lu L, Li W, Sun C, et al. (2020) Phycocyanin ameliorates radiation-induced acute intestinal toxicity by regulating the effect of the gut microbiota on the TLR4/Myd88/NF-κB pathway. JPEN J Parenter Enteral Nutr, 44: 1308-1317. [ DOI:10.1002/jpen.1744] 49. Zhu R, Lang T, Yan W, et al. (2021) Gut microbiota: influence on carcinogenesis and modulation strategies by drug delivery sys tems to improve cancer therapy. Adv Sci (Weinh), 8: 2003542. [ DOI:10.1002/advs.202003542] 50. Ferreira MR, Andreyev HJN, Mohammed K, et al. (2019) Microbio ta- and radiotherapy-induced gastrointestinal side-effects (MARS) study: A large pilot study of the microbiome in acute and late-radiation enteropathy. Clin Cancer Res, 25: 6487-6500. [ DOI:10.1158/1078-0432.CCR-19-0960] 51. Mete LS, Assisi D, Casale V. (2007) Efficacy of butyrate on rectal toxicity of radiotherapy in prostate cancer patients. Digestive and Liver Disease Supplements, 1: 23-26. [ DOI:10.1016/S1594-5804(08)60007-8] 52. Ahrén IL, Bjurberg M, Steineck G, et al. (2023) Decreasing the ad verse effects in pelvic radiation therapy: a randomized controlled trial evaluating the use of probiotics. Adv Radiat Oncol, 8: 101089. [ DOI:10.1016/j.adro.2022.101089] 53. Wei T, Ti W, Song Q, et al. (2022) Study of PD-1 inhibitors in com bination with chemoradiotherapy/chemotherapy in patients with esophageal squamous carcinoma. Current Oncology, 2022, 29: 2920 -2927. [ DOI:10.3390/curroncol29050238] 54. Wang J, Cheng Y, Wu Y, et al. (2022) 1262TiP Efficacy and safety of consolidative camrelizumab following definitive concurrent chemoradiotherapy in patients with locally advanced esophageal squamous cell cancer. Annals of Oncology, 33: S1124. [ DOI:10.1016/j.annonc.2022.02.208] 55. Van Den Ende T, De Clercq NC, Van Berge Henegouwen MI, et al. (2021) Neoadjuvant chemoradiotherapy combined with atezoli zumab for resectable esophageal adenocarcinoma: A single-arm phase ii feasibility trial (PERFECT). Clinical Cancer Research, 27: 3351-3359. [ DOI:10.1158/1078-0432.CCR-20-4443] 56. Zhu M, Chen C, Foster NR, et al. (2022) Pembrolizumab in combi nation with neoadjuvant chemoradiotherapy for patients with re sectable adenocarcinoma of the gastroesophageal junction. Clini cal Cancer Research, 28: 3021-3031. [ DOI:10.1158/1078-0432.CCR-22-0413] 57. Uboha NV, Eickhoff JC, Maloney JD, et al. (2022) Phase I/II trial of perioperative avelumab in combination with chemoradiation (CRT) in the treatment of stage II/III resectable esophageal and gastroesophageal junction (E/GEJ) cancer. Journal of Clinical On cology, 40: 4034-4034. [ DOI:10.1200/JCO.2022.40.16_suppl.4034] 58. Zhou Y, Li K, Adelson DL. (2024) An unmet need for pharmacology: Treatments for radiation-induced gastrointestinal mucositis. Bio med Pharmacother, 175: 116767. [ DOI:10.1016/j.biopha.2024.116767] 59. Yang S, Chu S, Gao Y, et al. (2019) A narrative review of cancer-related fatigue (CRF) and its possible pathogenesis. Cells, 8: 738. [ DOI:10.3390/cells8070738] 60. Thong MSY, van Noorden CJF, Steindorf K, et al. (2020) Cancer-related fatigue: causes and current treatment options. Curr Treat Options Oncol, 21: 17. [ DOI:10.1007/s11864-020-0707-5] 61. Bradley J and Movsas B (2004) Radiation esophagitis: Predictive factors and preventive strategies. Semin Radiat Oncol, 14: 280-286. [ DOI:10.1016/j.semradonc.2004.06.003] 62. Ajayi OD, Leggett CL, Myburgh SJ, et al. (2019) Esophageal stric ture following radiation, concurrent immunochemotherapy, treated with hyperbaric oxygen and dilation. Mayo Clin Proc Innov Qual Outcomes, 3: 241-245. [ DOI:10.1016/j.mayocpiqo.2019.04.002] 63. Xin Z, Liu Q, Ai D, et al. (2023) Radiotherapy for advanced esopha geal cancer: from palliation to curation. Curr Treat Options Oncol, 24: 1568-1579. [ DOI:10.1007/s11864-023-01134-8] 64. Murro D and Jakate S. (2015) Radiation esophagitis. Arch Pathol Lab Med, 139: 827-830. [ DOI:10.5858/arpa.2014-0111-RS] 65. Arroyo-Hernández M, Maldonado F, Lozano-Ruiz F, et al. (2021),Radiation-induced lung injury: current evidence. BMC Pulm Med, 21: 9. [ DOI:10.1186/s12890-020-01376-4] 66. Jain V and Berman AT. (2018) Radiation pneumonitis: old problem, new tricks. Cancers (Basel), 10: 222. [ DOI:10.3390/cancers10070222] 67. Baden LR, Swaminathan S, Angarone M, et al. (2016) Prevention and treatment of cancer-related infections, version 2.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw, 14: 882-913. [ DOI:10.6004/jnccn.2016.0093] 68. Liebling M, Rubio E, Ie S. (2015) Prophylaxis for pneumocystis jiro veci pneumonia: is it a necessity in pulmonary patients on high-dose, chronic corticosteroid therapy without AIDS? Expert Rev Respir Med, 9: 171-181. [ DOI:10.1586/17476348.2015.1002471] 69. Kouloulias V, Zygogianni A, Efstathopoulos E et al. (2013) Sugges tion for a new grading scale for radiation induced pneumonitis based on radiological findings of computerized tomography: cor relation with clinical and radiotherapeutic parameters in lung can cer patients. Asian Pac J Cancer Prev, 14: 2717-2722. [ DOI:10.7314/APJCP.2013.14.5.2717] 70. Magnusson M, Höglund P, Johansson K, et al. (2009) Pentoxifyl line and vitamin E treatment for prevention of radiation-induced side-effects in women with breast cancer: a phase two, double-blind, placebo-controlled randomised clinical trial (Ptx-5). Eur J Cancer, 45: 2488-2495. [ DOI:10.1016/j.ejca.2009.05.015] 71. Ozturk B, Egehan I, Atavci S, et al. (2004) Pentoxifylline in preven tion of radiation-induced lung toxicity in patients with breast and lung cancer: A double-blind randomized trial. Int J Radiat Oncol Biol Phys, 58: 213-219. [ DOI:10.1016/S0360-3016(03)01444-5] 72. Vujaskovic Z, Qin FF, Rabbani ZN, et al. (2002) Assessment of the protective effect of amifostine on radiation-induced pulmonary toxicity. Exp Lung Res, 28: 577-590. [ DOI:10.1080/01902140290096791] 73. Sasse AD, De Oliveira Clark LG, Sasse EC, et al. (2006) Amifostine reduces side effects and improves complete response rate during radiotherapy: results of a meta-analysis. Int J Radiat Oncol Biol Phys, 64: 784-791. [ DOI:10.1016/j.ijrobp.2005.06.023] 74. Mell LK, Malik R, Komaki R, et al. (2007) Effect of amifostine on response rates in locally advanced non-small-cell lung cancer pa tients treated on randomized controlled trials: a meta-analysis. Int J Radiat Oncol Biol Phys, 68: 111-118. [ DOI:10.1016/j.ijrobp.2006.11.043] 75. Kharofa J, Cohen EP, Tomic R, et al. (2012) Decreased risk of radi ation pneumonitis with incidental concurrent use of angiotensin-converting enzyme inhibitors and thoracic radiation therapy. Int J Radiat Oncol Biol Phys, 84: 238-243. [ DOI:10.1016/j.ijrobp.2011.11.013] 76. Ghosh SN, Zhang R, Fish BL, et al. (2009) Renin-Angiotensin sys tem suppression mitigates experimental radiation pneumonitis. Int J Radiat Oncol Biol Phys, 75: 1528-1536. [ DOI:10.1016/j.ijrobp.2009.07.1743] 77. Richeldi L, du Bois RM, Raghu G, et al. (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med, 370: 2071-2082. [ DOI:10.1056/NEJMoa1402584] 78. Flaherty KR, Wells AU, Cottin V, et al. (2019) Nintedanib in pro gressive fibrosing interstitial lung diseases. N Engl J Med, 381: 1718-1727. [ DOI:10.1056/NEJMoa1908681] 79. Lu Q, Liang Y, Tian S, et al. (2023) Radiation-induced intestinal in jury: injury mechanism and potential treatment strategies. Toxics, 11: 1011. [ DOI:10.3390/toxics11121011] 80. Hauer-Jensen M, Denham JW, Andreyev HJN. (2014) Radiation en teropathy--pathogenesis, treatment and prevention. Nat Rev Gas troenterol Hepatol, 11: 470-479. [ DOI:10.1038/nrgastro.2014.46] 81. Burke G, Faithfull S, Probst H. (2022) Radiation induced skin reac tions during and following radiotherapy: A systematic review of interventions. Radiography, 28: 232-239. [ DOI:10.1016/j.radi.2021.09.006] 82. de Menêses AG, dos Reis PED, Guerra ENS, et al. (2018) Use of trolamine to prevent and treat acute radiation dermatitis: A sys tematic review and meta-analysis. Rev Lat Am Enfermagem, 26: e2929. [ DOI:10.1590/1518-8345.2035.2929] 83. Harper JL, Franklin LE, Jenrette JM, et al., (2004), Skin toxicity dur ing breast irradiation: Pathophysiology and management. South Med J, 97: 989-993. [ DOI:10.1097/01.SMJ.0000140866.97278.87] 84. Hymes SR, Strom EA, Fife C. (2006) Radiation dermatitis: clinical presentation, pathophysiology, and treatment 2006. J Am Acad Dermatol, 54: 28-46. [ DOI:10.1016/j.jaad.2005.08.054] 85. Guo H, Zhang J, Yang HQ, et al. (2024) Acupuncture therapies on radiotherapy-induced radiation enteritis: A systematic review and meta-analysis. International Journal of Radiation Research, 22 (3): 521-527. [ DOI:10.61186/ijrr.22.3.521] 86. Fijardo M, Kwan JYY, Bissey PA, et al. (2024) The clinical manifes tations and molecular pathogenesis of radiation fibrosis. EBio Medicine, 103: 105089. [ DOI:10.1016/j.ebiom.2024.105089] 87. Xiaoshuai Z, Zhendong Z, Xiaoke S. (2024) Meta-analysis of risk factors for postoperative pulmonary infection in patients with col orectal cancer after radiotherapy. International Journal of Radia tion Research, 22: 719-725. [ DOI:10.61186/ijrr.22.3.719] 88. Hayashi Y, Iijima H, Isohashi F, et al. (2019) The heart's exposure to radiation increases the risk of cardiac toxicity after chemoradi otherapy for superficial esophageal cancer: a retrospective cohort study. BMC Cancer, 19: 195. [ DOI:10.1186/s12885-019-5421-y] 89. Spetz J, Moslehi J, Sarosiek K. (2018) Radiation-induced cardiovas cular toxicity: mechanisms, prevention, and treatment. Curr Treat Options Cardiovasc Med, 20: 31. [ DOI:10.1007/s11936-018-0627-x] 90. Yusuf SW, Venkatesulu BP, Mahadevan LS, et al. (2017) Radiation-induced cardiovascular disease: a clinical perspective. Front Cardi ovasc Med, 4: 66. [ DOI:10.3389/fcvm.2017.00066] 91. Wang X, Palaskas NL, Yusuf SW, et al. (2020) Incidence and onset of severe cardiac events after radiotherapy for esophageal can cer. Journal of Thoracic Oncology, 15: 1682-1690. [ DOI:10.1016/j.jtho.2020.06.014] 92. Tian X, Shen Z, Wang S, et al. (2024) Dosimetric comparison of different radial and longitudinal margins for tomotherapy in esophageal cancer. International Journal of Radiation Research, 22: 387-393. [ DOI:10.61186/ijrr.22.2.387] 93. Klaus R, Niyazi M, Lange-Sperandio B. (2021) Radiation-induced kidney toxicity: molecular and cellular pathogenesis. Radiat On col, 16: 43. [ DOI:10.1186/s13014-021-01764-y] 94. van Hagen P, Hulshof MCCM, van Lanschot JJB, et al. (2012) Pre operative chemoradiotherapy for esophageal or junctional can cer. New England Journal of Medicine, 366: 2074-2084. [ DOI:10.1056/NEJMoa1112088] 95. Lee J, Lim DH, Kim S, et al. (2012) Phase III trial comparing cape citabine plus cisplatin versus capecitabine plus cisplatin with con current capecitabine radiotherapy in completely resected gastric cancer with D2 lymph node dissection: The ARTIST trial. Journal of Clinical Oncology, 30: 268-273. [ DOI:10.1200/JCO.2011.39.1953] 96. Park SH, Lim DH, Sohn TS, et al. (2021) A randomized phase III tri al comparing adjuvant single-agent S1, S-1 with oxaliplatin, and postoperative chemoradiation with S-1 and oxaliplatin in patients with node-positive gastric cancer after D2 resection: the ARTIST 2 trial. Ann Oncol, 32: 368-374. [ DOI:10.1016/j.annonc.2020.11.017] 97. JS C, MD G, H. A, et al. (1999) Chemoradiotherapy of locally ad vanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85-01). Radiation Therapy Oncology Group. JAMA, 281: 1623-1627. [ DOI:10.1001/jama.281.17.1623] 98. Cats A, Jansen EPM, van Grieken NCT, et al. (2018) Chemotherapy versus chemoradiotherapy after surgery and preoperative chemo therapy for resectable gastric cancer (CRITICS): an international, open-label, randomised phase 3 trial. Lancet Oncol, 19: 616-628. [ DOI:10.1016/S1470-2045(18)30132-3] 99. Slagter AE, Jansen EPM, van Laarhoven HWM, et al. (2018) CRIT ICS-II: A multicentre randomised phase II trial of neo-adjuvant chemotherapy followed by surgery versus neo-adjuvant chemo therapy and subsequent chemoradiotherapy followed by surgery versus neo-adjuvant chemoradiotherapy followed by surgery in resectable gastric cancer. BMC Cancer, 18: 877. [ DOI:10.1186/s12885-018-4770-2] 100. Krouse RS, Anderson GL, Arnold KB, et al. (2023) Surgical versus non-surgical management for patients with malignant bowel ob struction (S1316): a pragmatic comparative effectiveness trial. Lancet Gastroenterol Hepatol, 8: 908-918. [ DOI:10.1016/S2468-1253(23)00191-7] 101. Kelly RJ, Ajani JA, Kuzdzal J, et al. (2021) Adjuvant Nivolumab in resected esophageal or gastroesophageal junction cancer. New England Journal of Medicine, 384: 1191-1203. [ DOI:10.1056/NEJMoa2032125] 102. Shitara K, Rha SY, Wyrwicz LS, et al. (2024) Neoadjuvant and ad juvant pembrolizumab plus chemotherapy in locally advanced gastric or gastro-oesophageal cancer (KEYNOTE-585): an interim analysis of the multicenter, double-blind, randomized phase 3 study. Lancet Oncol, 25: 212-224. [ DOI:10.1016/S1470-2045(23)00541-7] 103. Singh S, Halperin D, Myrehaug S, et al. (2024) [177Lu]Lu-DOTA-TATE plus long-acting octreotide versus high-dose long-acting octreotide for the treatment of newly diagnosed, advanced grade 2-3, well-differentiated, gastroenteropancreatic neuroen docrine tumors (NETTER-2): an open-label, randomized, phase 3 study. The Lancet, 403: 2807-2817. [ DOI:10.1016/S0140-6736(24)00701-3]
|