[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

Volume 23, Issue 3 (7-2025)                   Int J Radiat Res 2025, 23(3): 783-796 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sergieva K, Traikov L, Bogdanov T, Stoyanova E, Tafraddjiiska-Hadjiolova R, Hadzhiyska V. The largest dosimetry organizations. Int J Radiat Res 2025; 23 (3) :783-796
URL: http://ijrr.com/article-1-6680-en.html
Medical University Sofia, Faculty of Medicine, Department of Nuclear Medicine, Radiotherapy and Medical Oncology, Sofia, Bulgaria , ksergieva@medfac.mu-sofia.bg
Abstract:   (186 Views)
Radiotherapy has been the modality for treating cancer patients worldwide for more than 100 years. Radiation dose to patients is delivered through different techniques using high-energy photon beams generated by the linear accelerators. Radiotherapy techniques are developing at a speed never seen before. For continuous improvement, safe and effective radiotherapy delivery requires implementing adapted quality assurance (QA) programs and integral quality management (QM) systems. A key step in any QA program is the dosimetry audit. It provides an effective tool to improve the accuracy of patients’ treatments. In the global panorama, dosimetry audit programs are conducted by various institutions. Still, the largest of them is the International Atomic Energy Agency (IAEA) in Vienna, Austria, the Imaging and Radiation Oncology Core (IROC-H) Houston QA Center in the USA, and EQUAL (European Quality Laboratory) Laboratory in the framework of the ESTRO (European Society for Therapeutic Radiology and Oncology) ESTRO – EQUAL Laboratory in Villejuif Cedex, France.
Full-Text [PDF 1831 kb]   (95 Downloads)    
Type of Study: Review article | Subject: Radiation Biology

References
1. Greek Atomic Energy Commission, Dosimetry Audit in Radiotherapy, 15 years of experience & contribution to quality, Summary report, 2018:33
2. Clark CH, Aird EG, Bolton S, Miles EA, Nisbet A, Snaith JA, et al. (2015) Radiotherapy dosimetry audit: three decades of improving standards and accuracy in UK clinical practice and trials. Br J Radiol, 88: 20150251 [DOI:10.1259/bjr.20150251]
3. Izewska J, Bera P, Vatnitsky S (2002) IAEA/WHO TLD postal dose audit service and high precision measurements for radiotherapy level dosimetry. Radiation Protection Dosimetry,101(1-4): 387-92. [DOI:10.1093/oxfordjournals.rpd.a006008]
4. Izewska J, Vatnitsky S, Shortt KR (2004) IAEA/WHO postal dose audits for 5. radiotherapy hospitals in Eastern and South-Eastern Europe Cancer Radiothérapie, 8: S36-S43.
5. radiotherapy hospitals in Eastern and South-Eastern Europe Cancer Radiothérapie, 8: S36-S43.
6. Izewska J, Vatnitsky S, Shortt KR (2006) Postal dose audits for radiotherapy centers in Latin America and the Caribbean: Trends in 1969-2003 Panamerican Journal of Public Health, 20: 161-72 [DOI:10.1590/S1020-49892006000800013]
7. Izewska J, Andreo P, Vatnitsky S, Shortt KR (2003) The IAEA/WHO TLD postal dose quality audits for radiotherapy: a perspective of dosimetry practices at hospitals in developing countries. Radiother Oncol, 69(1): 91-7. [DOI:10.1016/S0167-8140(03)00245-7]
8. Izewska J and Andreo P (2000) The IAEA/WHO TLD postal programme for radiotherapy hospitals. Radiother Oncol, 54(1): 65-72. [DOI:10.1016/S0167-8140(99)00164-4]
9. Kroutilkkova D, Novotny J, Judas L (2003) Thermoluminescent dosimeters (TLD) quality assurance network in the Czech Republic. Radiother Oncol, 66(2): 235-44. [DOI:10.1016/S0167-8140(02)00328-6]
10. Yukihara EG, Yoshimura EM, Lindstrom TD, Ahmad S, Taylor KK, et al. (2005) High-precision dosimetry for radiotherapy using the optically stimulated luminescence technique and thin Al2O3:C dosimeters. Physics in Medicine and Biology, 50(23): 5619-28. [DOI:10.1088/0031-9155/50/23/014]
11. Yukihara EG, Yoshimura EM, Lindstrom TD, Ahmad S, Taylor KK, et al. (2005)High-precision dosimetry for radiotherapy using the optically stimulated luminescence technique and thin Al2O3:C dosimeters. Physics in Medicine and Biology, 50(23): 5619-28. [DOI:10.1088/0031-9155/50/23/014]
12. Yukihara EG, Mardirossian G, Mirzasadeghi M, Guduru S, Ahmad S (2008) Evaluation of Al2O3:C optically stimulated luminescence (OSL) dosimeters for passive dosimetry of high-energy photon and electron beams in radiotherapy. Med Phys, 35(1): 260-9. [DOI:10.1118/1.2816106]
13. Viamonte A, da Rosa LA, Buckley LA, Cherpak A, Cygler JE (2008) Radiotherapy dosimetry using a commercial OSL system. Med. Phys, 35(4): 1261-6. [DOI:10.1118/1.2841940]
14. Lye J, Dunn L, Kenny J, Lehmann J, Kron T, Oliver C, et al. (2014) Remote auditing of radiotherapy facilities using optically stimulated luminescence dosimeters. Med. Phys, 41(3): 032102. [DOI:10.1118/1.4865786]
15. Alves AD, Lye J, Kenny J, Dunn L, Lehmann J, Cole A, et al. (2015) Long term OSLD reader stability in the ACDS level one audit. Australasian Physical & Engineering Sciences in Medicine, 38(1): 151-6. [DOI:10.1007/s13246-014-0320-7]
16. Pradhan AS, Lee JI, Kim JL (2008) Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications. J Med Phys, 33(3): 85-99. [DOI:10.4103/0971-6203.42748]
17. Aguirre J, Alvarez P, Followill D, Ibbott G, Amador C, Tailor A (2009) Optically Stimulated Light Dosimetry: Commissioning of An Optically Stimulated Luminescence (OSL) System for Remote Dosimetry Audits, the Radiological Physics Center Experience. Med. Phys, 36(6): 2591-2592. [DOI:10.1118/1.3181785]
18. Mizuno H, Kanai T, Kusano Y, Ko S, Ono M, Fukumura A, et al. (2008) Feasibility study of glass dosimeter postal dosimetry audit of high-energy radiotherapy photon beams. Radiother Oncol, 86(2): 258-63. [DOI:10.1016/j.radonc.2007.10.024]
19. Manninen AL, Koivula A, Nieminen MT (2012) The applicability of radiophotoluminescence dosemeter (RPLD) for measuring medical radiation (MR) doses. Radiation Protection Dosimetry, 151(1): 1-9. [DOI:10.1093/rpd/ncr463]
20. Araki F, Ikegami T, Ishidoya T, Kubo HD (2003) Measurements of Gamma-Knife helmet output factors using a radiophotoluminescent glass rod dosimeter and a diode detector. Med. Phys, 30(8): 1976-81. [DOI:10.1118/1.1587451]
21. Andreo P, Burns DT, Nahum AE, Seuntjens J, Attix FH (2017) Fundamentals of Ionizing Radiation Dosimetry, Germany: Wiley-VCH
22. Lewis D, Micke A, Yu X, Chan MF (2012) An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan. Med. Phys, 39(10): 6339-50. [DOI:10.1118/1.4754797]
23. Lewis D and Devic S (2015) Correcting scan-to-scan response variability for a radiochromic film-based reference dosimetry system. Med Phys, 42(10): 5692-701. [DOI:10.1118/1.4929563]
24. AAPM Report No. 63 (1998) Radiochromic Film Dosimetry, Recommendations of AAPM, Radiation Therapy Committee Task Group No. 55.
25. Micke A, Lewis DF, Yu X (2011). Multichannel film dosimetry with nonuniformity correction. Med Phys, 38(5): 2523-34. [DOI:10.1118/1.3576105]
26. Izewska J, Hultqvist M, Bera P (2008) Analysis of uncertainties in the IAEA/WHO TLDpostal dose audit system. Radiation Measurements, 43(2-6): 959-63. [DOI:10.1016/j.radmeas.2008.01.011]
27. Arib M, Yaich A, Messadi A, Dari F (2006) Optimum parameters of TLD100 powder used for radiotherapy beams calibration check. Medical Dosimetry, 31: 184-9. [DOI:10.1016/j.meddos.2006.02.001]
28. Svensson H, Zdansky K and Nette P (1993) Dissemination, transfer and intercomparison in radiotherapy dosimetry: The IAEA concept. In: Measurement Assurance in radiotherapy dosimetry. Proceedings Series - International Symposium, Austria, 24-27 May 1993.
29. IAEA dosimetry audit. Available on: https://dosimetry-audit-networks.iaea.org/
30. Izewska J, Bokulic T, Kazantsev P, Wesolowska P (2019) 50 years of the IAEA/WHO postal dose audits for radiotherapy. IAEA SSDL Newsletter, 70: 11-16.
31. Izewska J, Bokulic T, Kazantsev P, Wesolowska P, van der Merwe D (2020) 50 Years of the IAEA/WHO postal dose audit programme for radiotherapy: what can we learn from 13756 results? Acta Oncologica, 59(5): 495-502. [DOI:10.1080/0284186X.2020.1723162]
32. Wesolowska, P, Cole A, Santos T, Bokulic T, Kazantsev P, et al. (2007) Characterization of three solid state dosimetry systems for use in high energy photon dosimetry audits in radiotherapy. Radiat Meas, 106: 556-562. [DOI:10.1016/j.radmeas.2017.04.017]
33. Dimitriadis A, Kazantsev P, Chelminski K, Titovich E, Naida E, et al. (2024) IAEA/WHOpostal dosimetry audit methodology for electron beams using radio photoluminescent dosimeters. Med Phys, 50: 7214-7221. [DOI:10.1002/mp.16776]
34. IROC IROC dosimetry audit. Available on: http://irochouston.mdanderson.org/RPC/home.htm
35. Geoffrey S. Ibbott, David S. Followill, H. Andrea Molineu, et al. (2008) Challenges in Credentialing Institutions and Participants in Advanced Technology Multi-Institutional Clinical Trials. Int J Radiat Oncol Biol Phys, 71(1 Suppl): S71-S75. [DOI:10.1016/j.ijrobp.2007.08.083]
36. Kirby TH, Hanson WF, Gastorf RJ, Chu CH, Shalek RJ (1986) Mailable TLD system for photon and electron therapy beams. Int J Radiat Oncol Biol Phys, 12: 261-5. [DOI:10.1016/0360-3016(86)90107-0]
37. Kirby TH, Hanson WF, Johnston DA (1992) Uncertainty analysis of absorbed dose calculations from thermoluminescence dosimeters. Med Phys, 19(6): 1427-1433. [DOI:10.1118/1.596797]
38. Ibbott GS, Haworth A, Followill D (2013) Quality assurance for clinical trials, Front. Oncol, 3: 3-11. [DOI:10.3389/fonc.2013.00311]
39. Ibbott GS, Followill D, Molineu A, Lowenstein J, Alvarez P, Roll J (2008) Challenges in Credentialing Institutions and Participants in Advanced Technology Multi-institutional Clinical Trials. Int J Radiat Oncol Biol Phys, 71(1 Suppl): S71-S75. [DOI:10.1016/j.ijrobp.2007.08.083]
40. Homnick J, Ibbott G, Springer A, Aguirre J (2008) Optically Stimulated Luminescence (OSL) Dosimeters can be used for remote dosimetry services. Med Phys, 35(6), 2994-2995. [DOI:10.1118/1.2962948]
41. Jursinic PA (2007) Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements. Med Phys, 34(12): 4594-4604. [DOI:10.1118/1.2804555]
42. Alvarez P, Kry SF, Stingo F, Followill D (2017) TLD and OSLD dosimetry systems for remote audits of radiotherapy external beam calibration. Radiation Measurements, 106: 412-415. [DOI:10.1016/j.radmeas.2017.01.005]
43. Homnick J, Ibbott G, Springer A, Aguirre J (2008) Optically Stimulated Luminescence (OSL) Dosimeters can be used for remote dosimetry services. Med Phys, 35: 2994. [DOI:10.1118/1.2962948]
44. Homnick J, Ibbott G, Springer A, Aguirre J (2008) OSL Dosimeters can be used for remote dosimetry. Int J of Radiat Oncol Biol Phys, 72(1): S672-3. [DOI:10.1016/j.ijrobp.2008.06.378]
45. Followill DS (2019) The Radiological Physics Center and Imaging and Radiation Oncology Core Houston QA Center's 50 years of vigilance and quality assurance for the radiation oncology community worldwide, IAEA SSDL Newsletter, 70: 19-21.
46. ESTRO EQUAL dosimetry audit. Available on: http://www.equalestro.com/index.html
47. Dutreix A, Derreumaux S, Chavaudra J, Van Der Schueren E (1994) Quality control of radiotherapy centres in Europe: beam calibration. Radiother Oncol, 32: 256-264. [DOI:10.1016/0167-8140(94)90025-6]
48. Derreumaux S, Chavaudra J, Bridier A, Rossetti V, Dutreix A (1995) A European Quality Assurance Network for Radiotherapy-Dose Measurement Procedure. Phys Med Biol, 40: 1191-1208. [DOI:10.1088/0031-9155/40/7/004]
49. Ferrreira, IH, Dutreix A, Brider A, Chavaudra J, Svensson H (2000) The ESTRO QUALity assurance network (Equal). Radiother Oncol, 55: 273-284. [DOI:10.1016/S0167-8140(99)00101-2]
50. Marre D, Ferreira I, Bridier A, Björeland A, Svensson H, Dutreix A. Chavaudra J (2001) Energy correction factors of LiF powder TLDs irradiated in high-energy electron beams and applied to mailed dosimetry for quality assurance networks. Phys Med Biol, 45: 3657-3674. [DOI:10.1088/0031-9155/45/12/311]
51. Pulliam K, Followill D, Court L, Dong L, Gillin M, Prado K, Kry S (2014) A six-year review of more than 13,000 patient-specific IMRT QA results from 13 different treatment sites. J Appl Clin Med Phys, 15(5): 196-206. [DOI:10.1120/jacmp.v15i5.4935]
52. Pasler, M, Hernandez V, Jornet N, Clark CH (2018) Novel methodologies for dosimetry audits: Adapting to advance radiotherapy techniques. Phys Imag Radiat Oncol, 5: 76-84. [DOI:10.1016/j.phro.2018.03.002]
53. Lehmann J, Alvesa A, Dunn L, Shawa M, Kennya J, et al. (2018) Dosimetric end-to-end tests in a national audit of 3D conformal radiotherapy. Phys Imag Radiat Oncol, 6: 5-11. [DOI:10.1016/j.phro.2018.03.006]
54. Veres A and Hallet JX (2019) Equal-Estro experience in dosimetry audits in advanced techniques of radiotherapy - the tomotherapy example. Equal-Estro Laboratory, Villejuif, France. IAEA SSDL Newsletter, 70: 29-31. [DOI:10.1016/j.ejmp.2019.09.145]
55. A Roué, J Van Dam, A Dutreix, H Svensson (2004) The EqualEstro external quality control laboratory in France. Cancer Radiother, 8 (Suppl 1): S44-9.
56. International Atomic Energy Agency, Directory of radiotherapy centers. Available on: https://dirac.iaea.org/assed on 26 Dec 2024
57. Izewska J, Lechner W, Wesolowska P (2018) Global availability of dosimetry audits in radiotherapy: The IAEA dosimetry audit networks database. Phys Imag Rad Oncol, 5: 1-4. [DOI:10.1016/j.phro.2017.12.002]
58. Melidis C, Bosch WR, Izewska J, Fidarova E, Zubizarreta E, et al. (2014) Global harmonization of quality assurance naming conventions in radiation therapy clinical trials. Int J Radiat Oncol Biol Phys, 90(5): 1242-9. [DOI:10.1016/j.ijrobp.2014.08.348]
59. FMEA in developing a QM program in protontherapy. Available on: http://www.irpa.net/members/P07.16fp.pdf.
60. Fenkell L, Kaminsky I, Breen S, Huang S, Van Prooijen M, Ringash J (2008) Dosimetric comparison of IMRT vs. 3D conformal radiotherapy in the treatment of cancer of the cervical esophagus. Radiother Oncol, 89: 287-91. [DOI:10.1016/j.radonc.2008.08.008]
61. Nutting CM, Morden JP, Harrington KJ, Urbano TG, Bhide SA, Clark C, et al. (2011) Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): A phase 3 multicentre randomised controlled trial. Lancet Oncol, 12: 127-36. [DOI:10.1016/S1470-2045(10)70290-4]
62. Mohan R, Arnfield M, Tong S, Wu Q, Siebers J (2000) The impact of fluctuations in intensity patterns on the number of monitor units and the quality and accuracy of intensity modulated radiotherapy. Med Phys, 27: 1226-37. [DOI:10.1118/1.599000]
63. Crowe SB, Kairn T, Kenny J, Knight RT, Hill B, Langton CM, et al. (2014) Treatment plan complexity metrics for predicting IMRT pretreatment quality assurance results. Australas Phys Eng Sci Med, 37: 475-82. [DOI:10.1007/s13246-014-0274-9]
64. McNiven AL, Sharpe MB, Purdie TG (2010) A new metric for assessing IMRT modulation complexity and plan deliverability. Med Phys, 37: 505-15. [DOI:10.1118/1.3276775]
65. Gershkevitsh E, Schmidt R, Velez G, Miller D, Korf E, et al. (2008) Dosimetric verification of radiotherapy treatment planning systems: results of IAEA pilot study, Radiother Oncol, 89: 338-346. [DOI:10.1016/j.radonc.2008.07.007]
66. Kazantsev P, Wesolowska P, Bokulic T, Izewska J, Lechner W, et al. (2017) New IAEA end-to-end on-site IMRT audit methodology: Pilot test results, Proceedings of the International Conference on Advance in Radiation Oncology (ICARO2), International Atomic Energy Agency (IAEA), Vienna.
67. Kazantsev P, Lechner W, Gershkevitsh E, Clark CH, Venencia D, et al. (2020) IAEA methodology for on-site end-to-end IMRT/VMAT audits: an international pilot study. Acta Oncol, 59: 141-8. [DOI:10.1080/0284186X.2019.1685128]
68. Molineu A, Hernandez N, Nguyen T, Ibbott G, Followill D (2013) Credentialing results from IMRT irradiations of an anthropomorphic head and neck phantom. Med Phys, 40(2): 022101-11. [DOI:10.1118/1.4773309]
69. Lechner W, Wesolowska P, Azangwe G, Arib M, Gabriel V, Alves L, et al. (2018) A multinational audit of small field output factors calculated by treatment planning systems used in radiotherapy. Phys Imaging Radiat Oncol, 5: 58-63. [DOI:10.1016/j.phro.2018.02.005]
70. Izewska J, Wesolowska P, Azangwe G, Followill DS, Thwaites DI, Arib M, et al. (2016) Testing the methodology for dosimetry audit of heterogeneity corrections and small MLC-shaped fields: Results of IAEA multi-center studies. Acta Oncol, 55: 909-16. [DOI:10.3109/0284186X.2016.1139180]
71. Carson ME, Molineu A, Taylor PA, Followill DS, Stingo FC, Kry SF (2016) Examining credentialing criteria and poor performance indicators for IROC Houston's anthropomorphic head and neck phantom. Med Phys, 43: 6491. [DOI:10.1118/1.4967344]
72. Distefano G, Lee J, Jafari S, Gouldstone C, Baker C, Mayles H, et al. (2017) A national dosimetry audit for stereotactic ablative radiotherapy in lung. Radiother Oncol, 122: 406-10. [DOI:10.1016/j.radonc.2016.12.016]
73. Lambrecht M, Melidis C, Sonke J-J, Adebahr S, Boellaard R, Verheij M, et al. (2016) Lungtech, a phase II EORTC trial of SBRT for centrally located lung tumours - a clinical physics perspective. Radiat Oncol, 11: 7. [DOI:10.1186/s13014-015-0567-5]
74. Alvarez P, Molineu A, Lowenstein J, Taylor P, Kry S, Followill D (2016) SU-F-T-485: Independent Remote Audits for TG51 Non-Compliant Photon Beams Performed by the IROC Houston QA Center, 43(6Part20): 3574. [DOI:10.1118/1.4956670]
75. Miri N, Lehmann J, Legge K, Zwan BJ, Vial P, Greer PB (2017) Remote dosimetric auditing for intensity modulated radiotherapy: A pilot study. Physics and Imaging in Radiation Oncology, 4: 26-31. [DOI:10.1016/j.phro.2017.11.004]
76. Kerns JR, Childress N, Kry SF (2014) A multi-institution evaluation of MLC log files and performance in IMRT delivery. Radiat Oncol, 9: 176. [DOI:10.1186/1748-717X-9-176]
77. Pasler M, Kaas J, Perik T, Geuze J, Dreindl R, Künzler T, et al. (2015) Linking log files with dosimetric accuracy-A multi-institutional study on quality assurance of volumetric modulated arc therapy. Radiother Oncol, 117(3): 407-11. [DOI:10.1016/j.radonc.2015.11.005]
78. Agnew CE, Irvine DM, McGarry CK (2014) Correlation of phantom-based and log file patient‐specific QA with complexity scores for VMAT. Journal of Applied Clinical Medical Physics, 15(6): 204-16. [DOI:10.1120/jacmp.v15i6.4994]
79. McGarry CK, Agnew CE, Hussein M, Tsang Y, Hounsell AR, Clark CH (2016) The use of log file analysis within VMAT audits. The British Journal of Radiology. 89(1062): 20150 - 489. [DOI:10.1259/bjr.20150489]
80. Miri N, Lehmann J, Legge K, Vial P, Greer PB (2017) Virtual EPID standard phantom audit (VESPA) for remote IMRT and VMAT credentialing. Physics in Medicine and Biology, 62(11): 4293-9. [DOI:10.1088/1361-6560/aa63df]
81. Bao J, Chen L, Zhu JH, Fei ZF, Hu ZT, Wang HZ, Gao Y (2021) Comprehensive end-to-end test for intensity modulated radiation therapy for nasopharyngeal carcinoma using an anthropomorphic phantom and EBT3 film. Int J Radiat Res, 19(1): 31-39. [DOI:10.29252/ijrr.19.1.31]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4722